

केंद्रीय भूमि जल बोर्ड

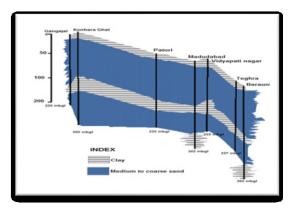
जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय

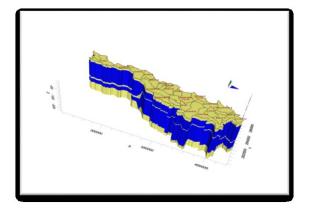
भारत सरकार

Central Ground Water Board

Ministry of Water Resources, River Development and Ganga Rejuvenation Government of India

Report on AQUIFER MAPPING


Parts of Saran, Vaishali, Samastipur, Begusarai and Patna Districts, Bihar


> मध्य पूर्वी क्षेत्र, पटना Mid-eastern Region, Patna

Report on

Aquifer Mapping in parts of Saran, Vaishali, Samastipur, Begusarai and Patna distrcits, Bihar (NAQUIM_Phase-II)

केंद्रीय भूमिजल बोर्ड जल संसाधन, नदी विकास और गंगा संरक्षण मंत्रालय, भारत सरकार मध्य पूर्वी क्षेत्र , पटना

CENTRAL GROUND WATER BOARD MINISTRY OF WATER RESOURCES, RIVER DEVELOPMENT & GANGA REJUVENATION

> GOVERNMENT OF INDIA MID EASTERN REGION, PATNA July 2016

Report on

Aquifer Mapping in parts of Saran, Vaishali, Samastipur, Begusarai and Patna distrcits, Bihar (NAQUIM_Phase-II)

Principal Contributors

Hydrogeologist

Sh. S.N. Dwivedi, Scientist C

(Nodal Officer)

Dr. Rakesh Singh, Scientist B

Sh. C.K.Gogoi, Scientist B

Dr. Fakhre Alam, Sr. Tech. Astt.

Geophysist

Dr. S.K.Adhikari, Scientist B

Sh. P. Raghavender, Sr. Tech. Astt.

Chemist

Sh. Suresh Kumar, Asst. Chemist Sushri. Supriya Singh, Sr.Tech. Astt.

Report

on

Aquifer Mapping in parts of Saran, Vaishali, Samastipur, Begusarai and Patna distrcits, Bihar (NAQUIM_Phase-II)

CONTENTS

		PAGE NO.
	List of Figures	v
	List of Tables	vi
	List of Annexures	vii
	List of Block	viii
CHAPTER 1	INTRODUCTION	1-15
1.1	Objective and Scope	1-2
1.2	Approach and Methodology	2
1.3	Area Details	2-4
1.4	Brief Description	4
1.4.1	Data availability	4
1.4.2	Data adequacy and data gap analysis and data generation	4-6
1.4.3	Rainfall-spatial, temporal and secular distribution,	6-7
1.4.4	Physiographic setup	7
1.4.5	Physiography/DEM	7-8
1.4.6	Geomorphology	8-9
1.4.7	Landuse	9-10
1.4.8	Soil	10-12
1.4.9	Hydrology and Drainage	12-13
1.4.10	Agriculture	13
1.4.11	Irrigation	13
1.4.12	Cropping patterns	13
1.4.13	Prevailing water conservation/recharge practices	14
1.5	Climate	14
1.6	Geology	14-15
1.7	Sub surface lithological information	15
CHAPTER 2	DATA COLLECTION AND GENERATION	16-24
2.1	Hydrogeological	16
2.1.1	Water level, pumping tests, soil infiltration studies, slug tests	16-19
2.2	Hydrochemical	19
2.2.1	Water quality sampling, number of samples and analysis mechanism	19-21
2.3	Geophysical	21
2.3.1	Location, number, analytical techniques	21-22

2.4	Exploratory drilling-State, CGWB and private wells	22
2.4.1	Number, location, depths, well design	22-24
CHAPTER 3	GENERATION OF AQUIFER MAP	25-229
3.1	Aquifer Disposition	24
3.1.1	Aquifer disposition in the area	25-27
3.2	Aquifer Characterizations	27-28
3.3	Aquifer disposition and its hydraulic characteristics	28-29
CHAPTER 4	GROUND WATER RESOURCES	30-32
4.1	Dynamic Ground Water Resources	30-31
4.2	Static resource and extraction from unconfined aquifer as well as in/from deeper aquifers	31-32
CHAPTER 5	GROUND WATER RELATED ISSUES	33
5.1	Identification of issues	33
5.2	Major Ground Water Issues	33
CHAPTER 6	MANAGEMENT STRATEGIES	34-40
6.1	Distance- Drawdown Modeling of the 2nd aquifer	34-36
6.2	Proposed Design of Arsenic Free Wells	36
6.3	Implementation plan and recommendation	37-38
6.4	Requirement of deep tubewell schemes for piped water supply	38-39
6.5	Suggested Plan for tal areas of Patna district	39-40

List of Figure

		Page No.
Figure 1.1	Area to be covered under NAQUIM in different phases	1
Figure 1.2	Villages map of NAQUIM Phase- II	2
Figure 1.3	Base map of the Study area	3
Figure 1.4	Digital Elevation Model of the study area	8
Figure 1.5	Geomorphological Map	9
Figure 1.6	Landuse & Landcover Map	10
Figure 1.7	Soil map of the study area	12
Figure 1.8	Drainage map of the study area	13
Figure 1.9	Geological Map of the area (Source: GSI)	15
Figure 2.1	Water level monitoring wells in the study area	16
Figure 2.2a	monsoon-Depth to water level map of pre	17
Figure 2.2b	monsoon-Depth to water level map of post	17
Figure 2.3	Piper's Diagram of the ground water samples	20
Figure 2.4	USSL diagram	21
Figure 2.5	Locations of exploratory wells (drilled by CGWB)	23
Figure 3.1	Hydrogeological section fom Gangajal to Barauni.	26
Figure 3.2	Hydrogeological section from Fathua to Mokama.	26
Figure 3.3	Hydrogeological section from Sirdilpur to Hawaspur.	27
Figure 3.4	Hydrogeological section from Fathua to Mokama.	27
Figure3.5a	3D view of aquifer disposition	28
Figure3.5b	3D view of aquifer disposition	28
Figure 6.1a, b, c&D	Distance - Drawdown behavior of 2 nd Aquifer for varying discharge rate	34-36
Figure 6.2	Schematic design of tube well with cement seal for arsenic affected area.	37
Figure 6.3	Design of recharge shaft for accelerated vertical recharge in tal areas	40

List of Table

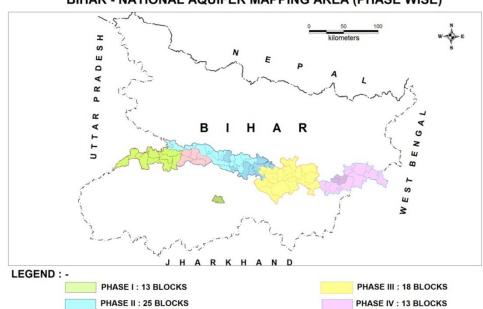
		Page No.
Table 1.1	Demographic details of the administrative blocks falling under National Aquifer Mapping area – Phase II	3-4
Table 1.2	Water level monitoring data of Phase- II	5
Table 1.3	Groundwater quality data of Phase-II	5-6
Table 1.4	Geophysical data (VES) of Phase-II	6
Table 1.5	District wise Land Utilisation Statement of Bihar during 2009-10 (unit : in hectares)	11
Table 2.1	Salient features of CGWB exploratory wells	18
Table 2.2a	Location detail of wells drilled by CGWB	23
Table 2.2b	Location detail of bore well drilled by other agencies	24
Table 4.1	The number of additional shallow tube wells	30-31
Table 4.2	Block wise estimated total resource in Aquifer I	31-32
Table 6.1	Requirement of water supply schemes from second aquifers for piped water supply in arsenic affected areas	48

List of Annexure

		Page No.
Annexure I	Water level monitoring stations	41-43
Annexure II	Chemical analysis of groundwater sample of the study	44-46
	area.	
Annexure IIIa	As concentration ranges from $10 - 50$ ppb	47-48
Annexure IIIb	As concentration ranges from > 50 ppb	48
Annexure IV	Location details of points where VES has been	49-51
	conducted	
Annexure- V	National aquifer mapping (NAM) exploration details	52-64
Annexure VI	Dynamic Ground Water Resources of Blocks taken under Phase II	65-66

Distrrict	Block	Page No.
Patna	Athmalgola	67-71
	Baktiyarpur	72-76
	Barh	77-81
	Pandarak	82-86
	Mokamah	87-91
Begusarai	Bhagwanpur	92-96
	Birpur	97-101
Vaishali	Biddupur	102-106
	Hajipur	107-111
	Raghopur	112-116
	Desri	117-121
Saran	Chapra	122-126
	Dighwara	127-131
	Revilganj	132-136
	Sonpur	137-141
Samastipur	Mohanpur	142-146
	Mohiuddin Nagar	147-151

List of Block (Phase- II)


CHAPTER- 1 INTRODUCTION

Under the phase II of National Aquifer Mapping programme (NAM), a total of 23 blocks falling in Patna, Saran, Vaishali, Samastipur and Begusarai distrcits have been taken up for detailed hydrogeological survey and preparation of Aquifer Management plan. In the study, hydrogeological survey, geophysical investigations and groundwater quality studies have been undertaken and the data generated have been used in conjunction with the existing data available for the area in preparation of the aquifer maps and formulation of the aquifer management plan.

In addition to the 23 blocks, the present report also documents the findings of the investigations done in Ravelganj and Chapra Blocks covered during Phase I.

1.1 **Objective and Scope**

The project envisages detailed characterisation of the aquifers by integarating the available data pertaining to lithology, groundwater geophysics, groundwater quality with the newly generated data during the course of National Aquifer Mapping programme. The generation of the fresh data under the NAQUIM has been made on the basis of the data gaps identified. Phase wise national Aquifer Mapping area are given in Fig. 1.1

BIHAR - NATIONAL AQUIFER MAPPING AREA (PHASE WISE)

Fig. 1.1 Area to be covered under NAQUIM in different phases

Attempt has also been made to generate a conceptual model of the area for depicting the aquifer in 3-D using visual Modflow pro software. Village map of phse II are given in Fig 1.2.

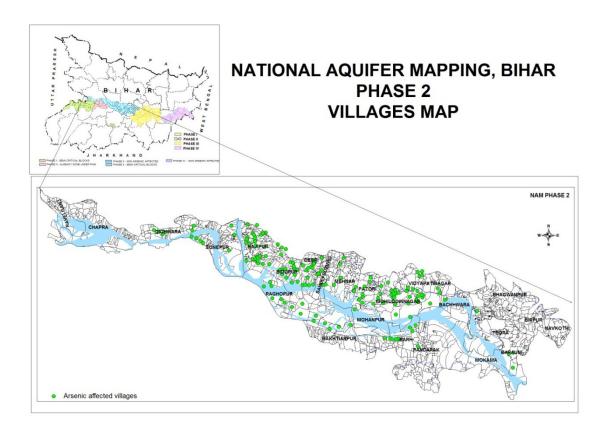


Fig. 1.2 Villages map of NAQUIM Phase- II

1.2 Approach and Methodology

The work plan for the aquifer mapping envisaged compilation, integration, validation and analysis of the existing database at one platform with a view to generate various thematic maps like land use and land cover map, geomorphology maps, geology, hydrogeology etc using various GIS and geo-scientific computer softwares. Data were collected from all concerned agencies for preparing the status of data gap. Greater attention was paid on activities that required generation of additional data to fill the identified gap.

1.3 Area Details

The area falling under Phase II of NAM in Bihar State covers the aquifers in the Ganga stem part and spreads over the Saran, Vaishali, Samastipur and Begusarai located on the northern bank of the Ganges and the eastern parts of the Patna district on the southern bank of the Ganga. A total of 23 blocks have been covered during this phase.

The study area spreads over 2678 Sq Kms covering 23 administrative blocks. The area lies between N latitudes 25.851 and 25.491 and E longitudes 84.573 and 86.197 falling in Survey of India toposheet nos 72C/9, 10, 13, 14, 72G/2, 5, 6, 7, 10, 11, 14, 15 and 72K/2, 3. The location of the study area is shown in Fig. 1.3. The population density of the study area is 289 person per sq. km. The salient demographic details of the administrative blocks falling in the area is given in Table 1.1.

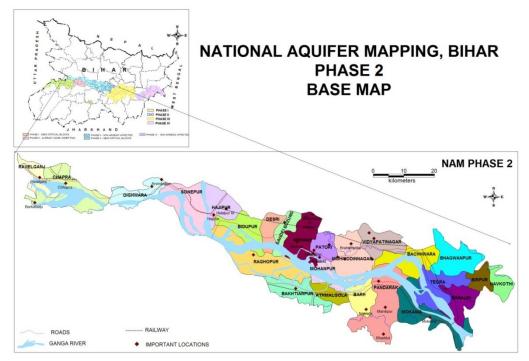


Fig.1.3: Base map of the Study area

Table 1.1: Demographic details of the administrative blocks falling under National Aquifer
Mapping area – Phase 2

S. No.	Block	TotalArea	Population (as per 2011 census)			
5. NU.	DIUCK	(in Sq.Km.)	Rural	Urban	Total	
1	Ravelganj	74	12460	6016	18476	
2	Chapra	201	35998	33303	69301	
3	Dighwara	98	15425	5237	20662	
4	Sonepur	182	37472	6383	43855	
5	Mokama	177	22873	10544	33417	
6	Hajipur	112	50867	24033	74900	
7	Raghopur	234	40183	0	40183	
8	Bidupur	108	45287	0	45287	
9	Desri	62	15450	0	15450	
10	Sahdai Buzurg	64	23958	0	23958	

11	Mahnar	139	24107	7908	32015
12	Patori	68	32606	0	32606
13	Mohanpur	70	21114	0	21114
14	Mohiuddinagar	160	35885	0	35885
15	Vidyapati Nagar	108	29982	0	29982
16	Bhagwanpur	142	35035	0	35035
17	Bachhwara	125	39641	0	39641
18	Teghra	139	26213	23736	49949
19	Barauni	102	35436	16633	52069
20	Birpur	51	18832	0	18832
21	Naokothi	56	22655	0	22655
22	Bakhtiarpur	115	27240	7295	34535
23	Athmalgola	54	13681	0	13681
24	Barh	97	23780	9310	33090
25	Pandarak	241	23968	0	23968

1.4 Brief Description

The phase 2 area of Bihar stretches from Saran in west to Begusarai in east covering parts of five districts and 23 blocks. The phase 2 area is traversed by approximately 172 km long stretch of river Ganga forming the axial drainage. The area is characterised by highly fertile alluvial plain. The soil type is loamy to coarse grained. During heavy monsoons, part of the area on the southern bank of the river Ganga gets flooded and remains water logged for months, locally called as *tal* areas.

1.4.1 Data availability

Central Ground Water Board has carried out hydrogeological surveys and groundwater exploration in the area. Ground water regime monitoring is carried out on a regular basis. The data available from the earlier surveys have been compiled and data gap analysis has been carried out for working out the need for additional data generation in the study area.

1.4.2 Data adequacy and data gap analysis and data generation

As per the existing data availability on April 2012, data gap analysis was done. On the basis of this data gap analysis, fresh data was generated. All the data gap analysis is done on the basis of area of the blocks under study. Some of the requirement in the area has been reworked considereing homogeneity in aquifers for fresh data to be generated *(Table. 1.2, 1.3, 1.4)*.

S. No.	State	District	Block	Requirement reworked considering homogeneity in aquifers	Data availbility	Data Gap	Data Generated
1.	Bihar	Patna	Bakhtiarpur Barh Athmalgola Pandarak Mokama	13	2	11	11
2.	Bihar	Vaishali	Hajipur Raghopur Bidupur Desri Sahdei Buzurg Mehnar	18	2	16	16
3.	Bihar	Saran	Dighwara Sonepur Chapra Ravelganj	21	8	13	13
4.	Bihar	Samastipur	Mohanpur Patori Mohiuddinnagar Vidyapatinagar	17	3	14	14
5.	Bihar	Begusarai	Bachhwara Naokothi Barauni Teghra Bhagwanpur Birpur	16	4	12	12

Table 1.2: Water level monitoring data of Phase- II

Table 1.3 : Groundwater quality data of Phase-II

S. No.	State	District	Block	Requirement reworked considering homogeneity in aquifers	Data Availability	Data Gap	Data Generated
1.	Bihar	Patna	Bakhtiarpur Barh Athmalgola Pandarak Mokama	49	18	31	31
2.	Bihar	Vaishali	Hajipur Raghopur Bidupur Desri Sahdei Buzurg Mehnar	15	10	5	5

3.	Bihar	Saran	Dighwara Sonepur Chapra Ravelganj	8	3	5	5
4.	Bihar	Samastipur	Mohanpur Patori Mohiuddinnagar Vidyapatinagar	5	5		
5.	Bihar	Begusarai	Bachhwara Naokothi Barauni Teghra Bhagwanpur Birpur	41	7	34	34

Table 1.4: Geophysical data (VES) of Phase-II

S. No.	State	District	Block	Reqt. prospect as per area of block	Data Availability	Data Gap	Data Generated
1	Bihar	Patna	Bakhtiarpur Barh Athmalgola Pandarak Mokama	29	24	5	5
2	Bihar	Vaishali	Hajipur Raghopur Bidupur Desri Sahdei Buzurg Mehnar	69	25	44	44
3	Bihar	Saran	Dighwara Sonepur Chapra Ravelganj	34	20	14	14
4	Bihar	Samastipur	Mohanpur Patori Mohiuddinnagar Vidyapatinagar	23	15	8	8
5	Bihar	Begusarai	Bachhwara Naokothi Barauni Teghra Bhagwanpur Birpur	22	22		

1.4.3 Rainfall-spatial and temporal distribution

The area experiences a humid sub-tropical climate. The monsoon season intiates by the third week of June and continues till the end of September. There is slight rainfall in

October but November and December are quite dry. The rainy season receives Southwest monsoon and accounts for about 90% of the total rainfall. The area receives an average normal monsoon rainfall of about ~ 1100 mm/year.

1.4.4 Physiographic setup

The area under NAQUIM Phase 2 covers central part of Bihar State. The area comprises of fertile alluvial plains separated in two parts north and south by river Ganga. The surface for the part located on the northern bank of the River Gnaga shows a general slope towards the south-east while for the part located on the southern flank of the Ganges, the general slope is towards north-east. The area has a major part as islands in the course of Ganga river, locally called as *Diyaras*. These diyaras comprises of some of the blocks of phase 2 such as Raghopur block and has good demographic settlements with agriculture as the main occupation. The River Ganga forms the levee or upland all along its southern bank. In the south of the natural levee of the Ganga, there is a vast stretch of backwaters known as the Tal lands. These tals remain submerged into a 1 to 3 m of water column from mid June to mid October during monsoon period. Post monsoon from 15th October onwards, when the water level receeds in ganga rivers, these *tals* drain out their water in the ganga rivers. The area is characterized by fertile flat land which is highly prone to floods during the monsoon season. The alluvium deposits covering the entire region are of Quaternary period. The region is characterized by silt deposited from the river Ganges almost every year and is extremely fertile.

1.4.5 Physiography/DEM

The elevation in the area ranges from 26 m to 78 m above mean sea level. Broadly the area has flat topography (*Fig. 1.4*)

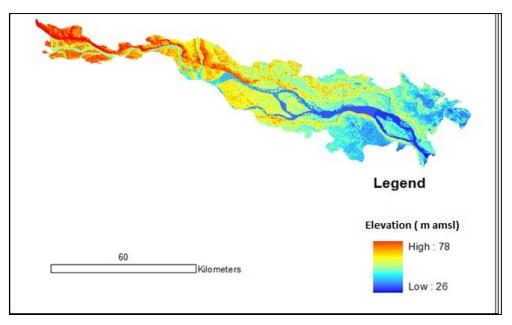


Fig. 1.4 Digital Elevation Model of the study area

1.4.6 Geomorphology

The study area forms part of the Middle Ganga Plain and physiographically it represents a monotonous flat topography. The land surface for the part located on the northern bank of the River Gnaga shows a general slope towards the south-east while for the part located on the southern flank of the Ganges, the general slope is towards north-east. The area is drained by rivers Ganga, Gandak and their tributaries (Fig. 1.4). The west - east flow of the River Ganga forms the axial drainage of the area. The River Ganga forms the levee or upland all along its southern bank. In the south of the natural levee of the Ganga, there is a vast stretch of backwaters known as the *Tal* lands.

The area is characterized by fertile flat land which is highly prone to floods during the monsoon season. The alluvium deposits covering the entire region are of Quaternary period.

The region is characterized by silt deposited from the river Ganges almost every year and is extremely fertile. The geomorphological map of the area (based on NRSA) is produced in Fig 1.5.

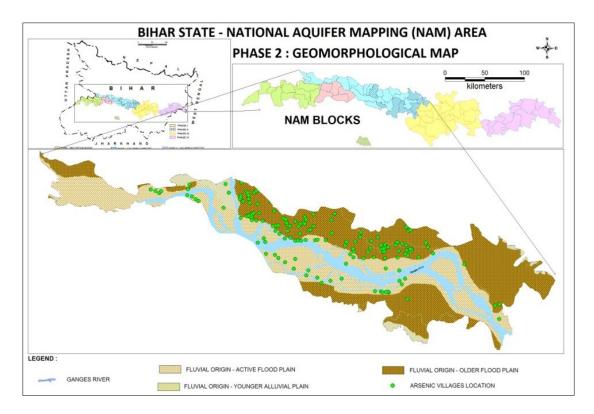


Fig. 1.5 Geomorphological Map

1.4.7 Landuse

Land use and land cover have direct linkage to the water demand of any area. The most reliable land use statistics are available from the reports of the Agriculture Department, Government of Bihar (2009), which provides district wise information.

Fig. 1.6 Landuse & Landcover Map

Of the total geographical area of 1,23, 3790 hectares of Saran, Vaishali, Samastipur, Beusarai and Patna districts, the net sown area is 79,7784 hectares respectively constituting nearly 65% of the total geographical area. The principal source of assured irrigation is by wells and tube wells, which together account for about 90% of the total irrigation. The cropping intensity of the five districts as a whole has been found to be 138%, however, Vaishali and Samastipur districts have higher cropping intensity as 156 and 164 % respectively (Table 1.5).

During the study, the landuse land cover map of the area falling under Phase 2 has been prepared based on the NRSA data. The landuse landcover map based on the NRSA data is produced as under in Fig. 1.6. (Source: AgricultureDepartment, Govt. of Bihar)

1.4.8 Soil

The area falling to the north of the River Ganga covering Saran, Vaishali, Samastipur and Begusarai districts, falls under the Agro-climatic zone I and is characterised by sandy loam and loamy soils with pH in the range of 6.5-8.4. The area located in the south of the River Ganga covering Patna district falls under the agroclimatic zone IIIB and is characterised

	Table 1.5 District wise Land Utilisation Statement of Bihar during 2009-10 (unit : in hectares)																		
				Land put to Non-agriculturable use				Permane	Land under Misc. Tree	Cultura	Fallow Land		Total	Net		Area			
Sl. No.	Name of District	Geographical Area	Forest Area	Land	W	ater	Total	Barren Uncultur-	nt Pastures	crop& Groves	ble Weste	ble	Other	Curren t		Non- Agricult	Sown	Total Cropped	Sown more
	District	Ана	Alta	Area	Parenial	Temporary		able Area	& Grazing Land	in net area sown	Land	Fallow Land	Fallow land	Total	ural Land	16)	Area	than once	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
1	Patna	317236	56	63732	10332	2429	76493	12369	113	989	764	1572	29120	30692	121476	195760	227135	31375	
2	Saran	264887	0	27332	3464	2892	33688	17915	221	8553	161	3689	17674	21363	81901	182986	230802	47816	
3	Vaishali	201449	0	28971	5827	2032	36830	24098	335	9709	141	308	5293	5601	76714	124735	195639	70904	
4	Samastipur	262390	0	53903	8189	951	63043	3811	67	8211	0	977	4519	5496	80628	181762	299734	117972	
5	Begusarai	187828	0	29732	7668	3967	41367	17961	16	3637	40	857	11409	12266	75287	112541	150391	37850	
	Total	1233790	56	203670	35480	12271	251421	76154	752	31099	1106	7403	68015	75418	436006	797784	1103701	305917	

by sandy loam, clay loam, loam and clayey soil with pH in the range of 6.8-8. The soils in general except those of the diara lands and Tal lands are moderately well drained to somewhat poorly drained.

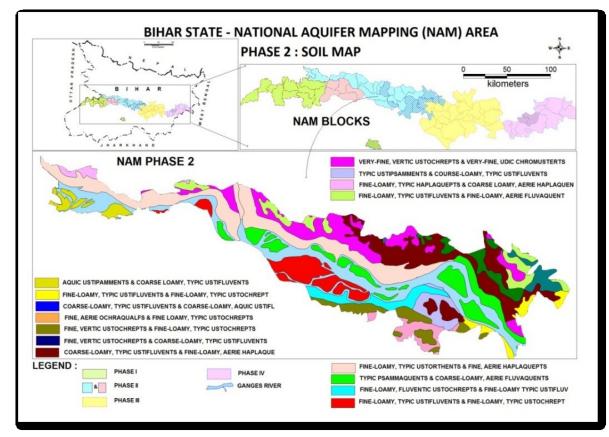


Fig. 1.7 Soil map of the study area

1.4.9 Hydrology and Drainage

The west to east flowing Ganga River forms the master drainage of the area. River Gandak from north joins the River Ganga in the western part of the study area at Sonepur near Patna. The part of the study area falling in Vaishali and samastipur district falls in the doab between the Ganga and the Burhi–Gandak. The other rivers in the are are the Baya, Balan, Jamuari etc flowing in NW-SE direction. Marshes and swamps locally known as *Chaurs* are common in the area.

Fig. 1.8 Drainage map of the study area

1.4.10 Agriculture

Agriculture is the mainstay of the population in the area. The northern part (located on the northern bank of the River Ganga) of the area falling in Saran, Vaishali, Samastipur and Begusarari districts fall in the Agroclimatic zone I while the southern part (located south of the River Ganga) falls in the agroclimatic zone III. The cropping pattern of the Zone I and III is discussed under the head cropping patterns.

1.4.11 Irrigation

The main source of irrigation in the area is through tube wells which accounts for irrigation in more than 97% of the total irrigated area in Saran, Samastipur and Begusarai districts. In Vaishali district, tube wells constitute the source of irrigation in about 85% of the irrigated area while in Patna district it accounts for irrigation in 67% of the irrigated area.

1.4.12 Cropping patterns

The area falling in Saran, Vaishali, Samastipur and Begusarai located to the north of the River Ganga falls under the agroclimatic zone I where the following cropping sequence is practised.

Zone – I : Rice – Wheat, Rice – Rai, Rice – Sweet Potato, Rice – Maize (Rabi), Maize – Wheat, Maize – Sweet Potato, Maize – Rai, Rice – Lentil, Rice-linseed In Patna district, located to the south of the River Ganga falling in agroclimatic zone III, the cropping sequence practised is

Zone - III : Rice - Wheat, Rice - Gram, Rice - Lentil, Rice - Rai

1.4.13 Prevailing water conservation / recharge practices

A large part of the area remains seasonally water logged. In the northern part of the Ganga, these are locally known as *Chaurs* and remain seasonally water logged from July till February. In the south of the natural levee of the Ganga, there is a vast stretch of backwaters known as the *Tal* lands. These *tals* remain submerged into a 1 to 3 m of water column from mid June to mid October during monsoon period. These water bodies act as indirect sources of ground water recharge in the area.

1.5 Climate

Climate records available from the IMD database indicate that the area enjoys a typical subtropical climate. The summer season in the area begins from the middle of March when hot westerly winds, locally called as *Loo*, begin to blow during the day. The months of April and May are hottest with peak summer temperatures shooting upto $44 - 45^{\circ}$ C. The summer season continues up to mid June. The winter season begins from November month and lasts till the beginning of March. January is the coldest month when the temperature comes down to as low as $4 - 5^{\circ}$ C. The monsoon season intiates by the third week of June and continues till the end of September. There is slight rainfall in October but November and December are quite dry. The rainy season receives Southwest monsoon and accounts for about 90% of the total rainfall. The area receives an average normal monsoon rainfall of about 1100 mm/year.

1.6 Geology

The area forms a part of the Gangetic plain underlain by immensely thick alluvial deposits comprising sediments (sand, gravel and clay) of Quaternary age deposited unconformably over the Precambrian basement. The alluvial deposits are characteristically divided into the Older and the Younger Alluvium.

Older Alluvium

The Older Alluvium (called Bhangar in the Ganges valley) forms slightly elevated terraces, generally above the flood level. These are dark coloured and in general are rich in concretion and nodules of impure calcium carbonate known as *'kankar'*, of various shapes and sizes.

Newer Alluvium

The Newer Alluvium is in general, light coloured and poor in calcareous matter. It contains lenticular beds of sand and gravel and peat beds. The geological map of the area is shown in the Fig. 1.9.

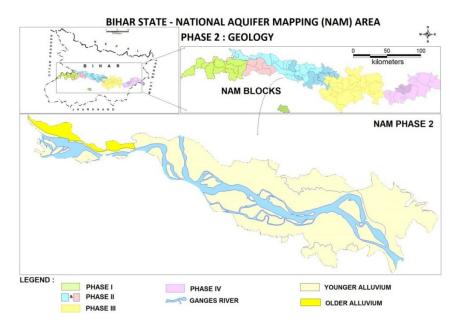


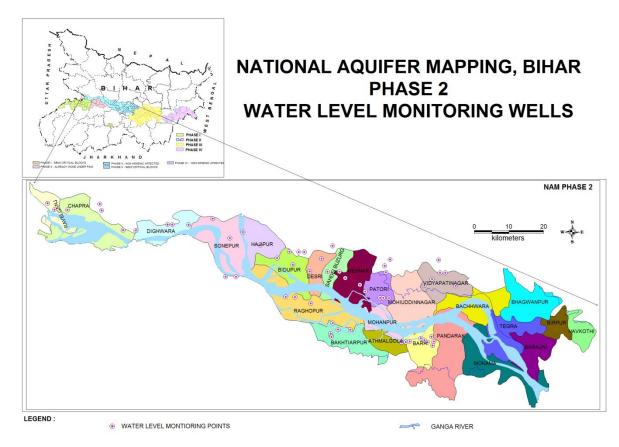
Fig 1.9: Geological Map of the area (Source: GSI)

The area is located in the central axial part of Middle Ganga Plain occupying the central part of the Ganga Basin. The Ganga basin is an active foreland basin formed in response to the uplift of Himalaya due to collision of the Indian and the Asian plate. The Middle Ganga Plain lies between the Munger-Saharsa ridge in the east and Faizabad ridge in the west exhibiting an asymmetrical sediment wedge, with thickness varying from less than a meter in basin margin areas with Peninsular craton to more than 5 km near the Himalayan orogen. The area forms a part of the Gangetic plains underlain by immensely thick alluvial deposits. Delineation of aquifer geometry based on the available data reveals presence of a thick pile of alluvial sediments of Quaternary age comprising various grades of clay, silt and sand which constitutes the ground water reservoir.

The sands brought and deposited by the Ganga are grey, micaceous and rich in ferromagnesian minerals and occupy the topmost horizon along the course of the river upto a few kilometres south of it constituting the newer alluvium consisting of clay, kankars, fine to coarse grained sands, gravels and pebbles at depths.

1.7 Sub surface lithological information

The area forms a part of the Gangetic plains underlain by immensely thick alluvial deposits. Assessment of the subsurface configuration of aquifer, based on the available data, reveals presence of a thick pile of alluvial sediments of Quaternary age comprising various grades of clay, silt and sand. A pervasive layer of clay mixed sand constitutes the top of the succession.



CHAPTER-II DATA COLLECTION AND GENERATION

2.1 Hydrogeology

The area forms a part of the Gangetic plains underlain by immensely thick alluvial deposits. Assessment of the subsurface configuration of aquifer, based on the available data, reveals presence of a thick pile of alluvial sediments of Quaternary age comprising various grades of clay, silt and sand. A pervasive layer of clay mixed sand constitutes the top of the succession. The presence of kankar and fine sand makes this clay layer semi pervious. The area is characterized by occurrence of fairly thick sands of various grades forming prolific aquifers.

Available data indicate presence of two aquifer system up to 300mbgl. The deeper aquifer is made up of medium to coarse grained sand often grading to gravelly sand at the bottom.

2.1.1 Water level, pumping tests, soil infiltration studies, slug tests

Water Level

Ground Water monitoring has been carried out at 59 locations in the area during the year 2014-15 (Annexure I). The depth to water level representing the phreatic aquifer has been prepared for pre- and post-monsoon season. The depth to water level map of the study area for the pre-and post-monsoon period is produced as below (Fig. 2.2a & 2.2b).

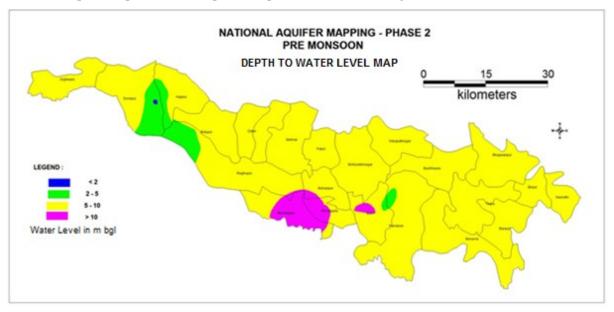


Fig. 2.2a Depth to water level map of pre-monsoon 2014

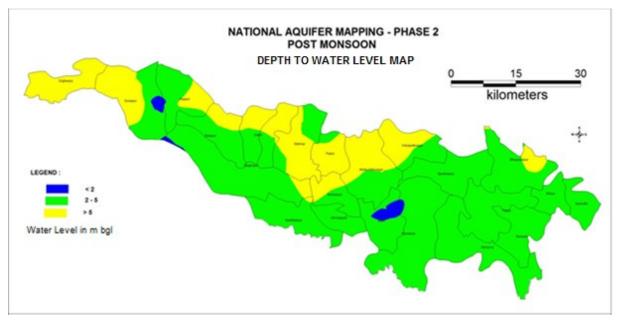


Fig. 2.2b Depth to water level map of post-monsoon 2015

The DTWL map of the area shows that majority of the area has water level of 5 - 10 m bgl in pre monsoon and 2 - 5 m bgl in post monsoon. In some parts, the water level is confined to 2 - 5 m bgl both in pre and post monsoon. In a part of Sonepur block, the water

level is found to be confined to < 2 m bgl in both pre and post monsoons. The water level in major parts of Bakhtiarpur and Barauni and few area in Barh block recedes to more than 10 m bgl in pre monsson season whereas in post monsoon it is confined to 2 - 5 m bgl.

Pumping tests

Pumping test data of CGWB wells (Table-2.1) indicate that the transmissivity value of the aquifers ranges between 1248 and 13,105 m²day⁻¹. The storage coefficient has been found ranging between $1X10^{-2}$ and 3.5×10^{-6} respectively indicating that the deeper aquifer remains in semi-confined to confined condition.

S.No.	Location	Depth drilled (m bgl)	Depth range of tapped Granular zones (m)	Discharge (m ³ /hr.)	Drawdow n (m)	Transmissivity (m ² /day)	Storativity
1	Barh	237	122-128, 134- 140, 170-176, 179-182, 205- 211, 220-226	191.3	4.4	9333	1.8*10-²
2	Madudabad	302	90-96,116- 128,132- 138,222-228	208	3.71	9002	1*10-²
3	Vidyapati nagar	256	210-222	56.8	5.78	1248	3.5*10- ⁶
4	Kancha	200	98-100, 116-128	73.8	4.28	2703	1.025*10 ⁻²
5	Shahpur Patori	129	80-86, 90-102	194.5	3.85	5340	6.3*10- ⁴
6	Barauni	252.5	154-160, 194- 200, 221-223	179.5	9.11	7888	9.2*10- ⁵
7	Gyaspur	252.7	92-100, 116- 122, 140-146, 150-156, 168- 174, 180-188	194.6	2.69	9425	
8	Bihat	233.75	140-146, 160- 166, 175-187	84	5.4	2380	
9	Teghra	182	125-127,146- 154,170-178	211	5.61		
10	Sewri, Cheria Bariarpur	396	208-225,230- 241,261-280	1272	6.52	13105	8.39*10 ⁻³
11	Bikrampur, Cheria Bariarpur	452	208-219,224- 240	136.2	9.7	5460	1.75*10 ⁻⁴

Table 2.1 Salient features of CGWB exploratory wells

Soil infiltration studies

To know the infiltration rate of water, it is important to find out the type of soil present in the area. For this, infiltration tests where done in the NAQUIM area at three blocks

namely Dighwara (Saran district), Sonepur (Vaishali district) and Hajipur (Vaishali district). It was found out that the soil type in most of the area is fine loamy to coarse loamy in nature. The soil is alluvial type influenced by flooding from Ganga and its tributary river.

2.2 Hydrochemical

2.2.1 Water quality sampling, number of samples and analysis mechanism

Groundwater is the most important and essential natural resource for domestic, industrial and agricultural needs. Water quality in an area is a function of physical and chemical parameters that are greatly influenced by geological formations and anthropogenic activities.

Quality of ground water is as much demanding as its quantity. Suitability of ground water for drinking and irrigational purpose is important for its safe and effective use. The state of Bihar is mainly dependent on ground water for the domestic and irrigation demand .The pressure on ground water is considerable also in the Pilot aquifer mapping area to meet urban and rural water requirements as well as the irrigation requirements in the semi-urban and rural areas. Chemically, the ground water is an aqueous solution in the sub-surface geological formation. The concentration of the major ions and other dissolved ions in ground water are functions of the availability of the constituents in the aquifer matrices and their solubility. Rocks, through which water circulate, are composed of minerals and amorphous solids, which in turn are composed of chemical elements that greatly affect the ground water quality.

To study the groundwater chemistry of different aquifer present in the area, a total no. of 103 groundwater samples was collected from different aquifers during different time periods for analysis of major parameters (Annexure II). The water samples were collected and stored in 1 liter capacity clean plastic bottles. Before collection of samples, the bottles were properly washed. Prior to collecting the samples, the containers were rinsed by the water to be sampled. The wells were duly pumped before collecting ground water sample so that the stagnant water, if any, is completely removed from storage within the well assembly

These water samples were analysed in chemical laboratory of CGWB MER-Patna, and PHED, Govt. of Bihar. Besides these, available historical data of chemical analysis of ground water were also studied to have an understanding of ground water chemistry of the area. Analytical results of ground water samples are given in the annexure II.

Classification of groundwater

In order to understand the chemical characteristics of groundwater in the study area, groundwater samples were plotted in Piper trilinear diagram (Piper 1944) using AquaChem software (Fig.2.3). Figure. show that groundwater smples are classified as various chemical types on the Piper diagram. The dominant water types are in the order of CaHCO₃ > Mixed CaMgCl > Mixed CaNaHCO₃ > NaCl. However, most of the samples are Ca-HCO₃ type. The Ca–HCO₃ water is primarily a result of dissolution of carbonate minerals, and the origin of water is mainly due to rainfall-derived recharge, over decades to centuries, whereby surface water charged with atmospheric and biogenic CO₂ infiltrates into the subsurface. Mixed CaMgCl and CaNaHCO₃ water type express mineral dissolution and recharge of freshwater. NaCl water type suggest the mixing of high salinity water caused from surface contamination sources such as irrigation return flow, domestic westewater, and septic tank effluents, with existing water followed by ion exchange reactions. Sixty two percent of the sample indicate CaHCO₃ type, 17% are Mixed CaMgCl type, 16% sample show Mixed CaNaHCO₃ type and 5% are Na Cl type water. On the basis of Piper diagram, groundwater of the study area is suitable for drinking purposes.

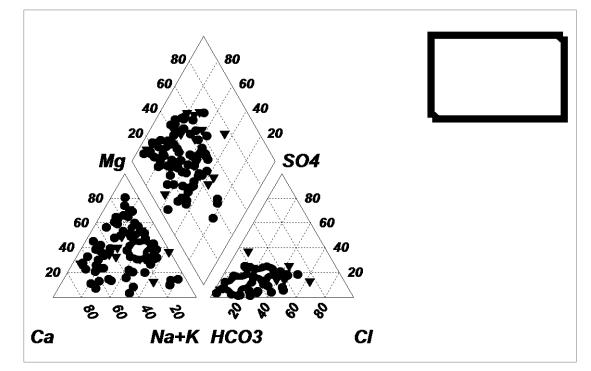


Fig. 2.3 Piper's Diagram of the ground water samples

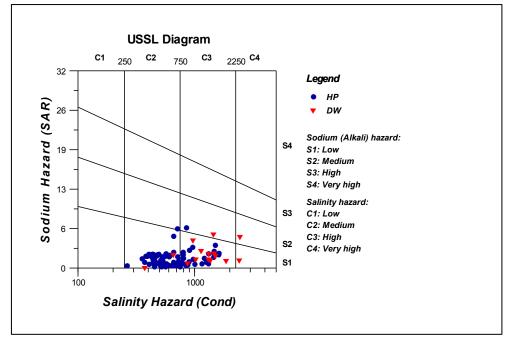


Fig. 2.4 USSL diagram

On the basis of USSL diagram, (Fig 2.4) groundwater of the study area are suitable for irrigation purposes.

Ground water quality problem in the Watershed

The major issue in ground water quality problem of the study area was high arsenic level (> 50 ppb which is the limit considered for drinking water) as reported by PHED,Govt. of Bihar and analysis of Ground water sample by CGWB from area. Arsenic concentration of the study area are given in Annexure- IIIa & b.

Aquifer disposition

The subsurface configuration of aquifer has been made based on available lithological logs of CGWB and State agencies along with interpreted records from VES survey. Several sections along different orientation have been prepared to depict aquifer geometry. The lithologs and the geophysical logs reveal the presence of a thick pile of alluvial sediments with alternating sequence of various grades of sand with clay and silt.

2.3 Geophysical

2.3.1 Location, number, analytical techniques

66 Surface electrical resistivity investigation (VES) was carried out by CGWB within the study area. The field data were interpreted with the help of empirical curves (Master curves) based on curve matching technique and computer based software. On the basis of

interpreted results, geoelectrical sections have been prepared and vertical and horizontal disposition of granular zones of various grades are analysed within the investigated area.

Surface geophysical survey:

In all 66 VES were performed within the aquifer mapping area. The VES were performed in the field and the data were interpreted with computer and manual process. The interpreted VES data of the area is given in annexure IV.

Instrument used

During the surface resistivity investigation a Syscal R2 resistivity meter (manufactured by IRIS, France) was used. The instrument measures potential differences between two potential electrodes when current is sent through two current electrodes and there by apparent resistivity is calculated automatically by the instrument.

All the curves are interpreted with the help of partial curve matching technique and also by the resistivity sounding interpretation software. The interpreted data is correlated with the available borehole information near by the survey area and the following resistivity range with respect to lithology is given as follows:-

Resistivity range (Ω-m)	Lithology
9 -15	Clay
14-30	Sand mixed with little clay
16 -25	Fine Sand
30 -50	Medium to Coarse Sand
60-200	Coarse sand mixed with gravel/Kankar
200-500	Desaturated sand

 Ω -m = ohm metre

All the interpreted results are tabulated in the Annexure-IV.

2.4 Exploratory drilling-State, CGWB and private wells

2.4.1 Number, location, depths, well design

Sub-surface lithological information (> 200m, bgl) from the available drilling records of exploratory well of CGWB have been tabulated in Table 2.2 (Fig 2.5). The lithologs of the wells are given in annexure v.

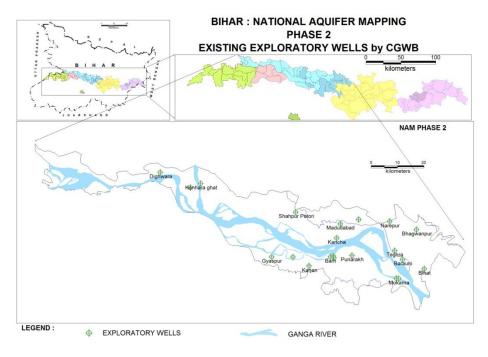


Fig 2.5: Locations of exploratory wells (drilled by CGWB)

S No	Location	Long	Lat	Depth drilled (m bgl)
1	Barh	85.6919	25.4735	237
2	Madudabad	85.7285	25.5862	302
3	Vidyapati nagar	85.7984	25.6011	256
4	Kancha	85.715	25.538	200
5	Shahpur Patori	85.5599	25.6261	129
6	Barauni	85.965	25.4643	252.5
7	Gyaspur	85.4689	25.4737	252.7
8	Bihat	86.0465	25.4325	233.75
9	Teghra	85.9344	25.4946	182

Table 2.2a: Location detail of wells drilled by CGWB

In addition to the CGWB data, liothlogs of 18 borewells from other sources have also been collected, the locations details of which are given in table. The lithologs of these wells are given in annexure. These lithologs are available mainly up to 100m and hence providing lithological information up to 100m bgl only.

S. No.	Location	Longitude	Latitude	Depth drilled (m bgl)
1	Sirdilpur	85.5694	25.6300	103.94
2	Suahpur Undi	85.5907	25.6357	110.64
3	Hatharua	85.6113	25.6232	110
4	Sehura	85.6187	25.5957	131.37
5	Mohammadpur	85.6689	25.5640	91.75
6	Sultanpur	85.6988	25.5369	79.25
7	Barhouna	85.7418	25.5853	92.96
8	Harpur Bochaha	85.7546	25.5959	90.53
9	Morwa Gopalpur	85.7694	25.5758	81.68
10	Mau	85.7771	25.5768	91.74
11	Sherpur	85.7850	25.5899	91.74
12	Chiranjivpur	85.8743	25.6175	139.59
13	Bachhwara	85.8980	25.5807	97.54
14	Rani	85.9093	25.5620	85.34
15		85.9320	25.5228	121.92
16	Rasulpur	85.9555	25.5328	71
17	Mukhtiarpur	85.9813	25.5704	113.08
18	Hawaspur	85.9294	25.6186	145.08

 Table 2.2b:
 Location detail of bore well drilled by other agencies

CHAPTER-III GENERATION OF AQUIFER MAP

3.1 Aquifer Disposition

The study area is located in the central axial part of Middle Ganga Plain occupying the central part of the Ganga Basin. The area forms a part of the Gangetic plains underlain by immensely thick alluvial deposits of Quaternary age comprising various grades of clay, silt and sand which constitutes the ground water reservoir.

3.1.1 Aquifer disposition in the area

To know the aquifer disposition in the study area, separate sections and fence diagrams have also been prepared based on the lithological information obtained through exploratory drilling undertaken by CGWB in conjunction with the available lithological logs of tubewells constructed by State Government.

From the geological sections and fence diagrams prepared the detailed aquifer geometry on regional scale has been established in the study area. Principal aquifers in the area have been delineated by grouping the fine to medium sand, coarse sand and gravelly sand as aquifers.

Aquifer disposition of the area are described through various sections and fence diagram prepared in different orientation and have been presented as under.

The sections reveal that the area is underlain by a two-tier aquifer system. A notable difference lies in the section on the northen and the southern bank of the River Ganga. In the northern bank, the clay layer separating the 1^{st} and the 2^{nd} aquifer is reasonably thick (20-35m) and occurs in the depth range of 130-145m, whereas, south of the River Ganga, the clay layer separating the 1^{st} and the 2^{nd} aquifer is comparatively much thinner (8-12m) and occurs at the depth range of 85-100m. Hydrogeological section is depicted in fig 3.1, 3.2 & 3.4.

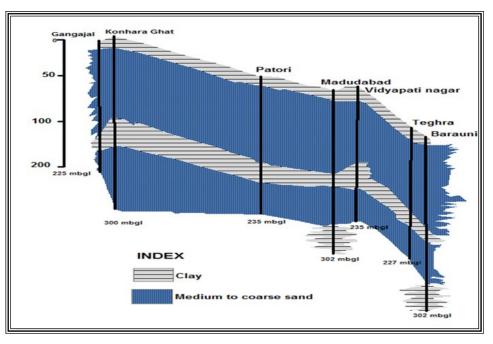


Fig. 3.1 Hydrogeological section fom Gangajal to Barauni.

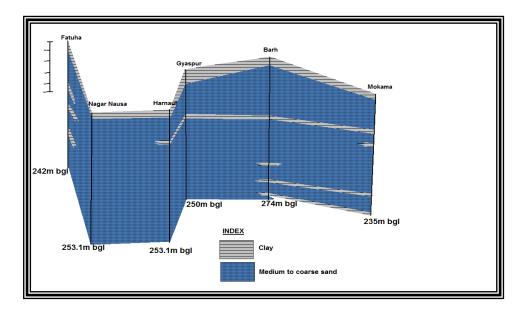


Fig. 3.2 Hydrogeological section from Fathua to Mokama.

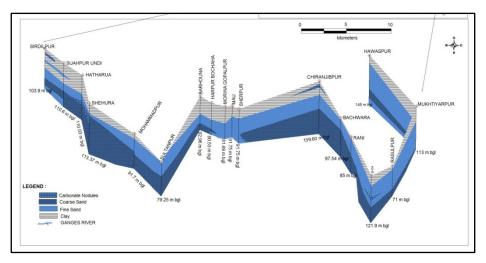


Fig. 3.3 Hydrogeological section from Sirdilpur to Hawaspur.

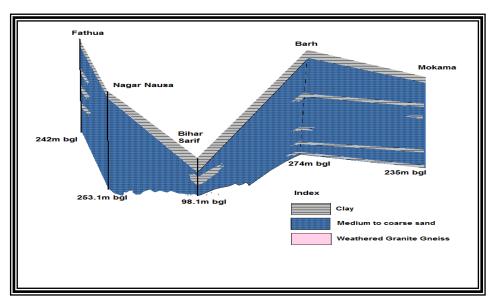


Fig. 3.4 Hydrogeological section from Fathua to Mokama.

3.1.2 Aquifer Characterizations

Characterization of aquifer upto 300 m bgl in the study area have been arrived at by convergence of the observations from the study of the different lithological sections, fence diagrams, geoelectrical sections, sections based on elogs and overall lithological model of the area. All these figures reveal the presence of a thick pile of alluvial sediments with alternation of various grades of sand with clay and silt. The area is characterized by occurrence of fairly thick sands of various grades forming prolific aquifers.

The study of sections, fence diagram and lithological model indicate that there are mainly two principal aquifer system in the area up to depth of 300m depth.

A 3D view of the aquifer disposition has been prepared which provide a clear impression of the spatial variation of aquifer thickness in the area.

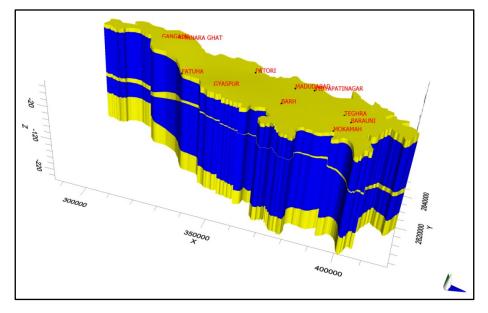


Fig.3.5a 3D view of aquiferdisposition

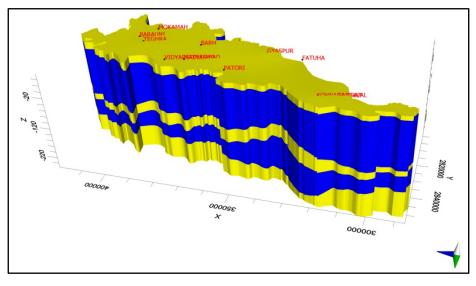


Fig. 3.5b 3D view of aquifer disposition

Perusals of these sections indicate that there are two principal aquifers below the top aquitard layer (water table aquifer) upto 300m depth separated by clay and sandy clay layers

3.1.3 Aquifer disposition and its hydraulic characteristics

The aquifer geometry and its characterisation up to 300 m bgl have been studied through drilling at various parts of arsenic affected areas of Bihar

CGWB has drilled number of wells in the area tapping multiple zones in different aquifers. Pumping test data of CGWB wells have been analysed to arrive at the hyydraulic characteristics of the aquifers. These apart, the data of the wells constructed by State Government indicate that the shallow tubewells tapping first aquifer (within 110m bgl) can yield upto 215 m³/hr for a drawdown rangining from 1.8- 5 m.

Salient characteristic of the exploratory wells drilled by CGWB in the area is given in table 2.1. Perusal of these data reveal significant potentiality of the aquifer of the area as the transmissivity ranges between 1248 and 9425 m²day⁻¹ with mean value of 6588 m²day⁻¹. The storage coefficient has been found ranging from 1×10^{-2} to 9.2×10^{-5} respectively, indicating semi confined to confined conditions.

CHAPTER-IV

GROUND WATER RESOURCES

4.1 Dynamic ground water resources

The dynamic ground water resources of the 25 Blocks of Saran, Vaishali, Samastipur, Begusarai and Patna district as per the assessment made as on March 2011 is presented as under. The overall stage of groundwater development in the area is 50.9 % and all the Blocks except two blocks (Naokothi and Birpur in Begusarai district) have been categorised under safe category on the basis of the status of ground water utilisation.

Perusal of the dynamic ground water resource (Annexure V) indicates that the existing stage of groundwater development varies from 33.5% in Mohanpur Block (Samastipur District) to 97.5 % in Naokothi block (Begusarai District). Considering the nature of the aquifers in the study area, recommendations for increasing groundwater development upto 70% stage of development can be made. The number of additional shallow tube wells that can be recommended in different blocks considering the above criteria is as under (Table 4.1).

S. No.	Block	District	No of additional shallow tube wells Recommended (allowing stage of development upto 70%)
1	Bachhawara	Begusarai	0
2	Bhagwanpur	Begusarai	0
3	Birpur	Begusarai	0
4	Naokothi	Begusarai	0
5	Teghra	Begusarai	138
6	Mohanpur	Samastipur	236
7	Mohiaddinagar	Samastipur	104
8	Patori	Samastipur	341
9	Vidyapatinagar	Samastipur	0
10	Biddupur	Vaishali	801
11	Hazipur	Vaishali	0
12	Mahnar	Vaishali	0
13	Raghopur	Vaishali	573
14	Sahdai Bizurg	Vaishali	40
15	Dighwara	Saran	0
16	Sonpur	Saran	200
17	Chapra	Saran	78
18	Revelganj	Saran	168

Table 4.1 The number of additional shallow tube wells

19	Athmalgola	Patna	0
20	Bakhtiapur	Patna	474
21	Barh	Patna	45
22	Mokama	Patna	275
23	Pandarak	Patna	501

4.4 Static resource and extraction from unconfined aquifer as well as in/from deeper aquifers

In the present exercise, attempt has been made to estimate the avaialability of the total ground water resource in the aquifers. In order to estimate the total availability of groundwater resource, a generalized 3 D disposition of the aquifer has been made using Visual Modflow Flex package. To prepare the 3 D disposition of the aquifers, a number of lithological logs available for the study area have been considered along with the results of the geophysical investigations made in the area. The generalized 3 D disposition of the aquifer represents the Principal aquifer groups. A number of minor layers/clay intercalations recorded in the individual lithological logs have been subsumed into the dominant lithological layers immediatedly overlying/underlying it.

The avaialablity of the total ground water resource in Aquifer I considering an average specific yield of 4% has been worked out as 13,400 MCM. Thus it can be surmised that the area is blessed with significant groundwater reserves which can be harnessed during the lean seasons. The distribution of the total groundwater resource has been apportioned Block wise considering the variation in the thickness of the Aquifer I in different Blocks. The Block wise estimated total resource in Aquifer I is as under (Table 4.2).

Block	Total Area (in Sq. Km.)	Average thickness of Aquifer I in each Block (m)	Total available Ground Water resource Aquifer I (MCM)
Ravelganj	74	140	413
Chapra	201	140	1122
Dighwara	98	140	547
Sonepur	182	140	1016
Mokama	177	70	494
Hajipur	112	120	536
Raghopur	234	80	747
Bidupur	108	120	517

Table 4.2 Block wise estimated total resource in Aquifer I

I	I	I	1
Desri	62	120	297
Sahdai Buzurg	64	120	306
Mahnar	139	130	721
Patori	68	130	353
Mohanpur	70	100	279
Mohiuddinagar	160	120	766
Vidyapati			
Nagar	108	120	517
Bhagwanpur	142	130	736
Bachhwara	125	120	598
Teghra	139	120	665
Barauni	102	120	488
Birpur	51	140	285
Naokothi	56	140	313
Bakhtiarpur	115	80	367
Athmalgola	54	85	183
Barh	97	80	318
Pandarak	241	85	817
	2979		13400

CHAPTER-V

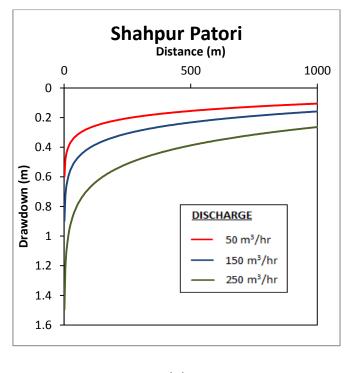
GROUND WATER RELATED ISSUES

5.1 Identification of issues

The most important groundwater issue in the study area is the arsenic contamination of groundwater affecting the upper part of the 1^{st} aquifer. Detialed investigations carried out by CGWB have established that the 2^{nd} aquifer occurring below the 1^{st} aquifer and separated from it by an aquitard layer is free from arsenic contamination.

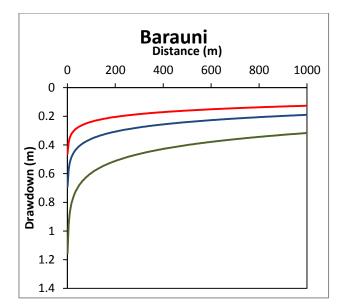
5.2 Major Ground Water Issues:

- Arsenic contamination affecting the 1st aquifer
- Contamination levels locally reaching upto 700 ppb
- Large population living in the affected villages (^{*} 8 lakhs in 183 arsenic affected villages in 15 Blocks)
- Patchiness in distribution of contamination
- Delayed drainage in "tal" areas of Patna district which impacts the agricultural productivity in Rabi season

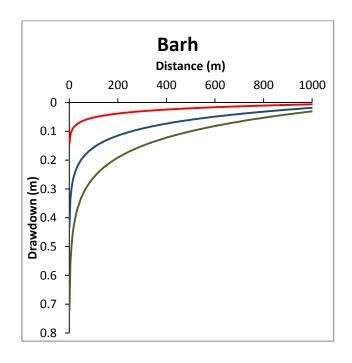


CHAPTER-VI MANAGEMENT STRATEGIES

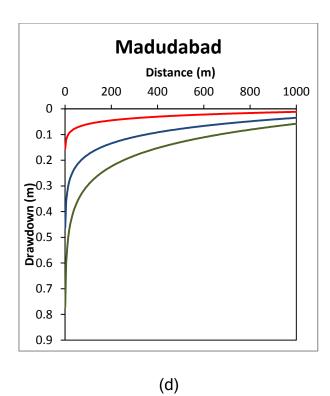
In order to address the problem of groundwater contamination in the affected area and to ensure safe water supply in the affected villages, it is important to prepare the groundwater development plan from the 2^{nd} aquifer which has been found as arsenic safe considering the aquifer characterisitics so as to ward off any possible threats of cross-contamination of the 2^{nd} aquifer from the 1^{st} aquifer through vertical leakance. A distance- drawdown analysis has been carried out for preparing the development plan for the 2^{nd} aquifer.


6.1 Distance- Drawdown Modeling of the 2nd aquifer

Central Ground Water Board has carried out exploratory drilling to delineate the arsenic safe deeper aquifers in the study area. The exploratory drilling has confirmed the presence of potential deeper aquifer system in the study area characterised by very low arsenic concentration and has been found safe for drinking uses. Using the field determined aquifer parameters, an attempt has been made to determine the spacing criteria for community water supply wells in the arsenic affected areas. The drawdown at the end of a day's pumping at various distances (r) for discharge of 250m³/hr and 50 m³/hr are shown in the table below. The shape of the cone of the depression formed ignoring the well loss component is shown in the following figures (fig. 6.1a,b,c & d)



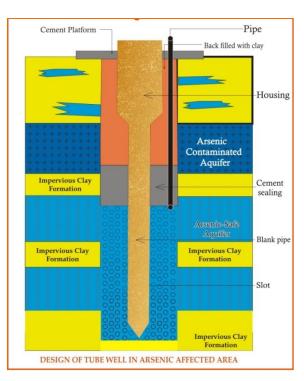
(a)



(b)

(c)

Fig. 6.1a, b, c & d: Distance - Drawdown behaviour of 2nd Aquifer for varying discharge rate


Considering a drawdown of 5 cm as acceptable, it is recommended to design the water supply schemes tapping the deeper aquifers for a maximum discharge of 50 m³/hr with a minimum of 3 Km as spacing between the two adjacent water supply schemes.


6.2 Proposed Design of Arsenic Free Wells

Development of the deeper aquifers should be made through properly designed wells which must be sealed from the overlying contaminated aquifers through cement sealing. The cement sealing is applied to a suitably thick intervening clay layer separating the arsenic contaminated aquifer from arsenic free aquifer. This cement seal prevents seeping of contaminated water through the annular space which

is filled with gravels. A schematic design is presented as under (fig 6.2).

Suggested Plan

- The 2nd aquifer should be considered only for drinking water supply
- Maximum recommended discharge from 2nd Aquifer: 50m³/h
- Minimum spacing between wells: 3 Km

6.3 Implementation plan and recommendation

The most important groundwater issue in the study area is the arsenic contamination of groundwater reported from the 15 out of the 25 blocks affecting the upper part of the 1st aquifer. Detialed investigations carried out by CGWB have established that the 2nd aquifer occurring below the 1st aquifer and separated from it by an aquitard layer is free from arsenic contamination. However, the most important management challenge in the area lies in protecting the deeper aquifers from the threats of cross-contamination. At the present level of our understanding of the arsenic contamination, prediction of the future arsenic concentrations is not possible. Studies have also cautioned over the development of the deeper aquifers. To arrive at a sustainable development strategy for the deeper aquifers in the arsenic affected areas, a distance-drawdown analysis for varying puping rates has been attempted for the deeper aquifers in the affected areas on the basis of the aquifer parameters of the

 2^{nd} aquifer. From the analysis it has been observed that in order to minimize the effects of well interference, water supply schemes in the affected Blocks should be designed for a maximum discharge of $50m^3$ /hr only and the radial distance between two pumping schemes should be kept at a minimum of 3 Km. On this basis, the number of schemes recommended for each Blocks is as under.

6.4 Requirement of deep tubewell schemes for piped water supply

Groundwater in the dug well zone has been found to contain low arsenic load and considering the 50 ppb as the limit, they have been found as safe in the study area (Table 6.1). However, owing to the prevalence of the handpumps and the ease of drawing water from it, dugwells are sparingly being used. The other concern with the dug wells is the faecal contamination resulting in high bacteriological load. However, if the existing dug wells are revived and care is taken to protect them from sewage contamination, the dugwells can be an alternative source of water supply. The UNICEF model of converting the dugwells into sanitary wells is also recommended.

A detailed study involving experts from agriculture, soil science, agronomy, chemistry and hydrogeology is required to assess the impact of the use of the arsenic contaminated groundwater for irrigation.

Industrial demand for groundwater is on the rise as a number of water intensive industries are steadily coming up in the area. It is recommended that extraction for industrial uses should be allowed only from the aquifer I and in no case from the aquifer II.

For the 1st Aquifer which is arsenic contaminated in its uppermost part, it is recommended to implement the use of solar photovoltaic groundwater pumping system with grounded tank for water storage developed for eastern India by the ICAR Research Complex for Eastern Region, Patna (Rahman and Bhatt, 2015). This technique has several advantages and the occurrence of shallow water level condition in the study area makes it more relevant. In addition to reduction in reliance on the fossil fuels for groundwater pumpage, this model may also be tested for the reduction in the arsenic load upon surface storage before being fed for irrigation.

Table	6.1: Requirement	nt of water supply sch supply in arsenio		quifers for piped water
S. No.	DISTRICT	BLOCK	Total population living in Arsenic affected Villages	No. of Water Supply Schemes required (for piped water supply) in As affected areas
1	Begusarai	Bachhwara	43241	4
2	Begusarai	Barauni	95599	10
3	Samastipur	Mohanpur	40747	4
4	Samastipur	Mohiuddinagar	89005	9
5	Samastipur	Patori	37979	4
6	Samastipur	Vidyapati nagar	28872	3
7	Saran	Dighwara	28300	3
8	Saran	Sonepur	11328	1
9	Vaishali	Bidupur	76613	8
10	Vaishali	Desri	31923	3
11	Vaishali	Hajipur	117015	12
12	Vaishali	Raghopur	98128	10
13	Vaishali	Sahdai buzurg	29276	3
14	Patna	Bakhtiarpur	47667	5
15	Patna	Barh	36631	4
		TOTAL	812324	81

6.5 Suggested Plan for tal areas of Patna district

The tal lands in Patna district famously known as the Mokama group of tals are saucer shaped low-lying area separated from the river Ganga by its natural levee. This area gets inundated with the onset of monsoon. After late September water starts receding from higher niches to drain completely by the middle of December. The soils are grey, medium heavy-to-heavy in texture and very poor in drainage. Major crops in Tal lands are mostly Rabi season crops like lentil, lathyrus, and gram with no crop possible during Kharif due to submergence. The cultivated land under this segment is 30209.06 ha.

The tal areas are appropriately named as the 'pulse bowl of Bihar' though there is ample scope for increasing the productivity of these crops. Among the pulses, area under lentil (Masoor) is maximum followed by gram but this was in reverse order earlier, the reason for it can be attributed to the pest and theft problem in gram crop leading to uneconomical yields, ultimately leading to a major shift of the area under gram towards the lentil crop. Tal lands are another huge chunk of low lands in Patna district, which remains submerged during the Rainy season, but this area yields a bumper Rabi crop. Some summer crops are also cultivated in Tal areas on a very limited scale, with the help of shallow tube wells.

Due to submergence in the rainy season, the kharif crops are not sown in the tal areas. Rabi cultivation is based on the residual moisture of the land freed from submergence. When the drainage is delayed beyond 15th October, rabi sowing is delayed and the crops suffer due to loss of moisture during their maturity stage and lack of irrigation facility.

In view of the above facts, recharge shafts filled with granular materials may be constructed in the fields where the thickness of the top clay layer is upto 5-10 m below ground level and submergence upto 0.25-0.5 cm remains by the beginning of October. This will accelerate the vertical drainage and recharge to groundwater which is impeded because of the clayey nature of the soil. The design of a recharge shaft (2 m dia) for clearing 1 ha of land in ~20 days with an average inundation of 0.5 m is as under (fig 6.3).

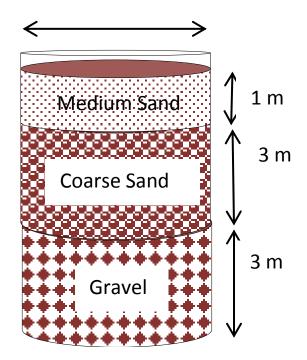


Fig 6.3 Design of recharge shaft for accelerated vertical recharge in tal areas

Annexure- I

Water level monitoring stations

Location	Block	long	lat	M.P (magl)	Diameter (m)	Depth	water level(m bgl) June 2014	Nov-14
Rukunpura	Baktiyarpur	85.13737	25.62365	0.46	1.68	7.79	6.21	4.35
Bidhipur	Baktiyarpur	85.46111	25.49041	0.27	1.94	11.3	9.72	7.85
Alipur	Baktiyarpur	85.44178	25.47373	0.74	0.97	10.14	8.56	4.85
Hathia	Baktiyarpur	85.49639	25.49042	1.07	1.19	10.03	8.45	6.83
Benipur	Baktiyarpur	85.44611	25.50707	0.55	1.65	10.23	8.65	6.53
Malikpur	Raghopur	85.30997	25.5737	0.75	1.83	8.09	6.51	3.88
Jagdispur	Raghopur	85.33655	25.5737	0.76	1.67	7.69	6.11	3.62
Raghopur	Raghopur	85.38222	25.55705	0.62	2.26	8.69	7.11	4.08
jahangirpur	Sonepur	85.14828	25.72365	0.57	1.94	8.12	6.54	3.31
Govindchak	Sonepur	85.18478	25.74033	0.66	1.31	9.62	8.04	5.31
Naya Gaon	Sonepur	85.09828	25.77364	0.32	1.38	9.04	7.46	5.39
Sheetalpur	Dighwara	85.02886	25.75695	0.96	1.34	9.02	7.44	5.64
Syedpur	Dighwara	84.98281	25.75694	0.28	1.76	10.05	8.47	5.84
Dumari adda	Dighwara	84.87828	25.74024	0.53	2.1	8.61	7.03	6.07
Mahadipur	Dighwara	84.84181	25.74023	0.51	1.82	10.08	8.5	5.39
Inai	Revelganj	84.68114	25.79019	0.35	1.44	9.34	7.76	5.96
Revelganj	Revelganj	84.64442	25.79018	0.6	1.76	10.48	8.9	7.1
Shiv Nagari	Revelganj	84.77317	25.80688	0.5	2.15	6.97	5.39	4.35
Ambika Dwar	Dighwara	84.96878	25.75694	0.3	1.81	10.32	8.74	5.96
Rahimapur	Hajipur	85.23478	25.70701	0.52	2.27	8.16	6.58	4.28

and the second s	1		1			1		1
Branti	Hajipur	85.31897	25.69037	0.35	1.27	8.06	6.48	4.1
Chakhamza	Bidupur	85.34608	25.69037	0.4	1.75	7.7	6.12	3.92
Chaksikandar	Bidupur	85.36233	25.69038	0.64	1.4	7.92	6.34	3.385
Uphraul chowk	Desri	85.41156	25.67373	0.78	1.85	8.84	7.26	4.84
Ram janki Math	Shahdei Buzurg	85.44294	25.70707	0.97	1.8	9.15	7.57	5.52
Jarpura	Patori	85.60781	25.67378	0.6	1.46	9.28	7.7	5.08
Chandan chowk	Patori	85.59656	25.64044	0.37	1.86	9.15	7.57	4.38
Andaur	Mohanpur	85.59294	25.65711	0.96	1.17	9.28	7.7	5.82
Kalyanpur Basti	Mohanpur	85.70667	25.60714	0.27	1.8	10.21	8.63	6.27
Bahadurpur	Baktiyarpur	85.4404	25.48	0.62	1.43	8.59	7.01	4.93
Karota	Baktiyarpur	85.4426	25.4708	0.53	1.4	6.72	5.14	3.88
Semariya/nauka tola	Revelganj	84.62417	25.80684	0.28	1.8	8.63	7.05	5.17
Rouza	Chapra Sadar	84.77892	25.79022	0.42	2.86	9.92	8.34	6.14
Nawada Khurd	Hajipur	85.16733	25.62366	0.55	1.8	10.56	8.98	6.28
Paikuli	Bidupur	85.28438	25.67369	0.99	1.69	10.15	8.57	6.01
Ramdauli	Bidupur	85.32975	25.65704	0.87	1.54	9.64	8.06	5.68
Khalsa Hasan Chauk	Bidupur	85.37797	25.64038	1.09	1.9	9.34	7.76	5.9
Khurampur	Desri	85.42865	25.6404	1.03	1.98	8.95	7.37	5.28
Sultanpur	Sahdei Bujurg	85.46362	25.64041	0.91	1.38	9.84	8.26	6.02
Mehnar	Mehnar	85.48057	25.62374	0.4	1.56	10.01	8.43	6.24
Simri	Vidyapati Nagar	85.76697	25.64049	0.52	2.58	8.14	6.56	4.43
Bangraha	Vidyapati Nagar	85.75108	25.64049	0.39	1.74	9.92	8.34	6.48
Khedarpur Chowk	Kancha	85.74703	25.67382	0.29	2.18	9.29	7.71	5.14
Navtola tare	Vidyapati Nagar	85.72858	25.62381	0.38	1.92	8.69	7.11	4.92
Hasanpur	Mohanpur	85.52239	25.60709	0.62	1.86	10.36	8.78	6.92
Chandanpur-Dhamaun	Patori	85.53794	25.59043	0.39	1.76	13.42	11.84	8.57

Mohanpur-dih	Mohanpur	85.58033	25.57377	0.49	2.27	6.34	4.76	3.78
Mohanpur	Mohanpur	85.58956	25.57377	0.34	2.26	10.01	8.43	6.21
Bingawan Dumri	Mohanpur	85.60556	25.57378	0.52	2.41	9.27	7.69	5.45
Sahit	Vidyapati Nagar	85.79672	25.60717	0.36	1.56	7.22	5.64	3.87

Annexure-II

Chemical analysis of groundwater sample of the study area.

ON	Ti	,,		·]	·		ı	·	T1		<u>ا </u>	,i				<u> </u>	i
SNo.	Location	Long	Lat	Block	District	Source	pН	EC	tds	CO3	HCO3-	Cl-	F	SO42-	NO3-	TH	Ca2+ N
	Gadi Mohanpur	85.5718	25.56817	Mohanpur	Samastipur	Handpump	7.37	602	385.28	0	244	21	1.16	40	0	235	20
1 _ 1	Mohanpur College				۱ م . ۱		' I	۱		I	1	l i		ا ا	۱ <u>ا</u>	۱ <u> </u>	
2	Chauk	85.5839	25.56272	Mohanpur	Samastipur	Handpump	7.34	880	563.2	0	366	35	0.76	45	0	360	22
3	Bhagara	85.5948	25.55994	Mohanpur	Samastipur	Handpump	7.27	803	513.92	0	293	21	0.9	45	0	245	50
4	Bilgama	85.6139	25.56397	Mohanpur	Samastipur	Handpump	7.35	706	451.84	0	311	32	0.79	52	0	315	34
5	Naya Tola Hasanpur	85.5352	25.58322	Mehnar	Vaishali	Handpump	7.4	804	514.56	0	250	21	0.95	21	0	115	14
6	Hasanpur Tinmuhani	85.5239	25.58581	Mehnar	Vaishali	Handpump	7.6	1165	745.6	0	354	110	1.18	79	23.7	460	56
7	Baghnoch	85.5176	25.59617	Mehnar	Vaishali	Handpump	7.56	774	495.36	0	329	35	0.77	18	23.8	295	18
8	Lavapur Chauk	85.5036	25.60267	Mehnar	Vaishali	Handpump	7.65	855	547.2	0	397	28	1.06	20	11.1	365	16
9	Mehnar	85.4796	25.61025	Mehnar	Vaishali	Handpump	7.29	1751	1120.64	0	598	110	0.84	94	25.3	600	22
10	Thana More, Mehnar	85.4813	25.60892	Mehnar	Vaishali	Handpump	7.14	1920	1228.8	0	622	191	1.02	104	25.3	740	74
11	Mehnar Thana	85.4814	25.60742	Mehnar	Vaishali	Handpump	7.68	783	501.12	0	378	11	1.15	41	0	310	16
12	Malitola	85.4839	25.60481	Mehnar	Vaishali	Handpump	7.36	1465	937.6	0	561	106	1.19	105	25.2	500	54
13	Ward No.11, Mehnar	85.4872	25.60326	Mehnar	Vaishali	Handpump	7.56	1343	859.52	0	439	135	0.89	120	25.1	560	64
i	Ward No.10,	I		I]	I		۱ <u> </u>	I <u> </u>		۱ <u> </u>		۱ <u> </u>		۱ <u> </u>	۱ <u> </u>	' 	
1	FateHandpumpur	l i			1	1	1	I ,		ļ ,		!	1	' 1	'	۱ I	
14	kamali	85.4914	25.60169	Mehnar	Vaishali	Handpump	7.63	683	437.12	0	317	14	1	34	0	260	18
	Ward No. 10,	I		I]	ı <u> </u>		' <u> </u>	I		<u>ا </u>		۱		' <u> </u>	' <u> </u>	'	
1	FateHandpumpur	l i			1	1	1	I ,		ļ ,		!	1	' 1	'	۱ I	
15	Kamali	85.4927	25.60336	Mehnar	Vaishali	Handpump	7.81	578	369.92	0	256	18	0.93	28	0	205	22
16	Maniyarpur	85.3938	25.62242	Biddupur	Vaishali	Handpump	7.22	719	460.16	0	317	18	0.75	37	0	260	20
17	Near Kutubpur Chauk	85.3704	25.62606	Biddupur	Vaishali	Handpump	7.1	1321	845.44	0	409	138	0.45	96	24.6	555	62
	Opposite Biddupur	I		۱ <u> </u>	ـــــــــــــــــــــــــــــــــــــ		' <u> </u>	I		<u>ا</u>		<u> </u>		' -	' <u></u>	' 1	· T,
18	Police Station	85.3329	25.64328	Biddupur	Vaishali	Handpump	7.96	732	468.48	0	336	21	0.83	49	0	245	18
19	Ramnagar Diara	85°34′20.4′′	25°28′16.3′′	Athmalgola	Patna	Handpump	7.82	578	375.7	0	239.85	24.81	0.32	71.25	3.37	205	30 3
	i	I		Athmalgola	ـــــــــــــــــــــــــــــــــــــ		' <u> </u>	<u>ا </u>		<u> </u>		<u> </u>		' -	' <u></u>	' 1	·
20	Athmalgola	85°36′24.9′′	25°27′35.2′′	(As)	Patna	Handpump	8.2	721	468.65	0	270.6	99.26	1.07	33.17	4.05	195	24
21	Surajpura	85°37′33′′	25°26′35′′	Athmalgola	Patna	Dugwell	8.4	1472	956.8	9	528.9	166.61	1.01	105.2	24.86	275	2 0
22	Achuara	85°39′28.4′′	25°27′33.9′′	Athmalgola	Patna	Handpump	8.46	456	296.4	9	196.8	31.9	0.07	24.4	0	135	22
23	Bariarpur	85°45′38.2′′	25°30′3.6′′	Pandarak	Patna	Handpump	8.22	718	466.7	0	319.8	85.08	1.17	11.03	0	65	8
24	Raili	85°46′13′′	25°29′33.8′′	Pandarak	Patna	Handpump	7.36	666	432.9	0	252.15	106.35	1.04	12.5	0	75	14
25	Meghagachi	85°47′42′′	25°29′5.4′′	Pandarak	Patna	Handpump	7.5	574	373.1	0	178.35	106.35	0.66	15.48	0	125	20
26	Bampura	85°47′24.5′′	25°28′2.7′′	Pandarak	Patna	Dugwell	7.94	665	432.25	0	184.5	16.3	0.03	96.35	34.48	190	30 2
27	Goasa	85°47′2.6′′	25°27′6.1′′	Pandarak	Patna	Handpump	8.21	395	256.75	0	196.8	24.81	0.66	21.46	0	90	34
·	· ·		•	• • •	•	<u> </u>	·	•		•	•	·		• • • •	•ـــــــــــــــــــــــــــــــــــــ	·	·

E CONTRACTOR OF																	
	SeikHandpumpura																
28	Manjulabigha	85°46′30.8′′	25°25′57.4′′	Pandarak	Patna	Handpump	7.66	441	286.65	0	209.1	31.9	0.72	25.05	0	100	16
29	Kondi	85°46′5′′	25°25′1′′	Pandarak	Patna	Handpump	8.11	408	265.2	0	209.1	17.72	0.91	22.21	0	100	16
30	Chak Jalal	85°44′39′′	25°23′36′′	Pandarak	Patna	Handpump	8.02	434	282.1	0	233.7	24.81	0.51	28.67	0	120	18
31	Ekdanga	85°42′27′′	25°23′22.7′′	Pandarak	Patna	Handpump	7.44	496	322.4	0	202.95	31.9	0.39	25.97	11.66	115	16
32	Saksohra	85°42′2.1′′	25°21′49.9′′	Pandarak	Patna	Handpump	8.26	375	243.75	0	172.2	28.36	0.34	23.4	0	115	18
33	Mubarakpur	85°43′59′′	25°20′24′′	Pandarak	Patna	Handpump	8.29	435	282.75	0	227.55	17.72	0.34	26.36	0	95	22
34	Barwane	85°44′55.6″	25°20′0.1′′	Pandarak	Patna	Dugwell	788	2482	1613.3	0	344.4	524.66	1.04	139.61	24.58	520	64 8
35	Jagmal Chak	85°45′52.4′′	25°19′34.5′′	Pandarak	Patna	Handpump	8.18	476	309.4	0	221.4	24.81	0.27	34.14	0	170	16 3
36	Pitunjia (As)	85°46′34.8′′	25°20′12.5′′	Pandarak	Patna	Handpump	7.56	357	232.05	0	221.4	3.54	0.95	4.62	0	95	12
	Sitarambaghi																
37	Kumhartola	85°48′47.7′′	25°20′12.5′′	Pandarak	Patna	Handpump	7.27	570	370.5	0	172.2	99.26	0.56	20.88	0	135	20 2
38	Hathidah(AS)	85°59′7.3′′	25°22′12.6′′	Mokama	Patna	Handpump	7.41	385	250.25	0	209.1	14.18	0.62	20.4	0	100	16
39	Goshain Gaon(As)	85°54′58′′	25°22′53.3′′	Mokama	Patna	Dugwell	8.31	1037	663.68	9	201	152	0.82	119	0	370	82
40	Badpur	85°00′30.7′′	25°19′56.9′′	Mokama	Patna	Dugwell	8.38	1332	852.48	15	256	170	0.71	102	24.3	470	88
41	Dariarpur tola	85°58′25.8′′	25°22′52.2′′	Mokama	Patna	Handpump	8.61	484	309.76	18	79	43	1	30	19.2	150	50
42	Aunta	85°57′35.2′′	25°23′7.4′′	Mokama	Patna	Handpump	8.13	802	513.28	0	305	46	0.7	62	24	255	82
43	Parshuramsthan	85°54′54.4′′	25°23′57.2′′	Mokama	Patna	Handpump	8.42	508	325.12	6	226	28	0.79	20	0	205	48
44	Seonar	85°53′27′′	25°24′33.3′′	Mokama	Patna	Handpump	8.69	411	263.04	6	159	32	0.92	22	0	155	54
45	Barahapur Bintoli	85°52′40.7′′	25°25′11.8′′	Mokama	Patna	Handpump	8.75	450	288	12	128	43	0.54	39	0	165	46
46	Morh English(As)	85°52′6.6′′	25°25′36.4′′	Mokama	Patna	Handpump	8.57	529	338.56	3	134	50	0.58	51	24.1	200	60
47	Sultanpur	85°51′24.5′′	25°26′56.9′′	Mokama	Patna	Dugwell	8.29	1496	957.44	0	329	227	1.1	110	0	445	52
48	Kanhaipur	85°50′48.6′′	25°27′46′′	Mokama	Patna	Handpump	8.55	500	320	3	250	14	1.2	22	0	200	56
49	Mekra	85°50′9.3′′	25°28′29.2′′	Mokama	Patna	Handpump	8.39	570	364.8	15	207	35	0.85	21	0	225	52
50	Dahia	85°00′50.6′′	25°32′18.1″	Bhagwanpur	Begusarai	Handpump	8.97	266	170.24	18	61	21	0.71	23	0	110	30
51	Bhardiha	85°59′16.3′′	25°32′57.2′′	Bhagwanpur	Begusarai	Handpump	8.6	526	336.64	24	183	21	0.47	28	2.7	210	54
52	Garhuni	85°57′35.4′′	25°34′0.5′′	Bhagwanpur	Begusarai	Handpump	8.9	446	285.44	27	134	21	1.17	23	0	125	36
53	Manupur	85°57′35.4′′	25°35′33.3′′	Bhagwanpur	Begusarai	Handpump	8.85	510	326.4	30	140	21	0.47	43	24.4	205	34
54	Dohta	85°59′22.8′′	25°35′22.3′′	Bhagwanpur	Begusarai	Handpump	8.1	1221	781.44	0	537	117	0.64	3	0	420	50
55	JagdisHandpumpur	86°00′40.6΄′	25°34′45.8′′	Bhagwanpur	Begusarai	Handpump	8.06	1270	812.8	0	354	163	1.4	111	0	490	32
56	Sanjat (As)	86°01′3.4′′	25°35′49.1′′	Bhagwanpur	Begusarai	Handpump	8.54	455	291.2	9	195	14	1	23	0	200	52
57	Tajpur	86°01′1′′	25°34′17.1′′	Bhagwanpur	Begusarai	Dugwell	8.4	1154	738.56	12	384	74	1.14	116	0	300	52
58	Narharpur(As)	86°02′21′′	25°34′23.1′′	Bhagwanpur	Begusarai	Handpump	8.7	517	330.88	33	153	18	0.62	44	0	185	68
59	Naula	86°03′55.5′′	25°33′29.1″	Bhagwanpur	Begusarai	Handpump	8.33	1625	1040	18	677	135	1.2	36	0	525	40
60	Pakdi	86°05′35.5′′	25°32′1.5′′	Birpur	Begusarai	Handpump	8.72	857	548.48	15	293	64	0.71	78	0	385	48
61	Parra(As)	86°05′57.8′′	25°29′42.6΄′	Birpur	Begusarai	Handpump	8.5	660	422.4	27	232	32	0.94	18	0	255	58
62	Phulkari	86°06′17.2′′	25°29′9.5′′	Birpur	Begusarai	Handpump	8.65	524	335.36	27	214	14	1.29	14	0	235	36
63	Kajichak	86°07′2.8′′	25°28′8.2′′	Birpur	Begusarai	Handpump	8.5	567	362.88	21	232	28	0.69	12	0	255	72
64	Rajaura	86°08′49′′	25°27′54.4″	Naokothi	Begusarai	Handpump	8.55	634	405.76	18	256	25	1.14	33	0	280	84
65	Khamhar	86°08′44.4′′	25°28′57.8′′	Naokothi	Begusarai	Handpump	8.78	513	328.32	27	189	21	1.28	19	0	220	46
66	Mohanpur(As)	86°07′54.5′′	25°31′5.3′′	Naokothi	Begusarai	Handpump	8.37	758	485.12	27	439	14	0.71	24	0	400	84
	• • • •	•	•		Ŭ										·	•	

68 Rukumpura 85.13737 25.62365 Bakhtiyarpur Pama Handpump 8.15 538 344.32 0 244 35.46 0.89 2.2 1.14 170 30 69 Bidhipur(Handpump) 85.46111 25.49041 Bakhtiyarpur Pata Dugwell 8 1341 858.24 0 677.1 17.3754 0.6 0.14 175 24 71 Alipurt 85.44078 25.47373 Bakhtiyarpur Pata Handpump 8.21 007 524.6 0.54.6 0.61 27 1.89 2705 18 72 Hatia 85.44611 25.50707 Bakhtiyarpur Pata Handpump 8.22 531 339.84 0 250.1 49.644 0.45 50.97 6.06 195 16 74 Maikpur(OG) 85.3655 25.5737 Raghopur Vaishali Handpump 7.96 644 424.96 0 207.4 49.644 0.37 50.17	Contra and Contra																	
69 Bidhipur(Handpump) 85.46111 25.49041 Bakhtiyarpur Patna Handpump 8.35 517 30.88 24 23.18 21.276 0.59 3.6 0.14 175 24 70 Bidhipur(DG) 85.46111 25.49041 Bakhtiyarpur Patna Handpump 8.1 1341 858.24 0 677.1 17.3754 0.6 3.4 30.07 410 56 71 Alipur 85.49639 25.49042 Bakhtiyarpur Patna Handpump 8.32 804 514.56 0 207.4 70.92 0.53 50.29 3.897 205 38 74 Malikpur(DG) 85.30997 25.5737 Raghopur Vaishali Dugwell 7.83 882 564.48 0 237.9 70.92 0.53 70.11 38.93 315 70 75 Jagdispur(Handpump) 85.3655 25.5737 Raghopur Vaishali Handpump 7.96 664 424.96 0	67		86°08′28.4′′	25°26′33.5′′	Naokothi	Begusarai		8.07	1010	646.4	v	488		0.29		÷	425	96
T0 Bidhipur(DG) 85.46111 22.49041 Bakhiyarpur Patna Dugwell 8 1341 858.24 0 677.1 17.3754 0.6 34 39.07 410 56 71 Alipur 85.44178 22.47373 Bakhiyarpur Patna Handpurp 8.31 909 581.76 0 524.6 0.61 27 1.99 270 18 72 Hata 85.44611 22.547042 Bakhiyarpur Patna Handpurp 8.32 531 339.84 0 250.1 49.644 0.46 50.97 6.06 15 16 74 Malkpur(DG) 85.30997 25.5737 Raghopur Vaishali Handpurp 7.96 664 424.96 0 207.4 49.644 0.37 50.1 34.22 155 52 76 Raghopur(UMadpurp) 85.38222 25.55705 Raghopur Vaishali Handpurp 7.96 6041.6 0 231.8 35.46 0.34	-										v							
71 Alipur 85.44178 25.47373 Bakhtiyarpur Patna Handpump 8.31 909 581.76 0 524.6 35.46 0.61 27 1.99 270 18 72 Hatia 85.49639 25.49042 Bakhtiyarpur Patna Handpump 8.22 804 514.56 0 207.4 70.92 0.52 52.92 38.97 205 38 73 Gyaspur 85.30097 25.5737 Raghopur Vaishali Dugwell 7.83 882 564.48 0 237.9 70.92 0.53 70.11 38.93 315 70 75 Jagdispur(Handpump) 853655 25.5705 Raghopur Vaishali Handpump 8 690 441.6 0 231.8 35.46 0.34 41.72 28.13 260 60 77 Raghopur(DW) 85.38222 25.55705 Raghopur Vaishali Handpump 7.9 424.56 0 201.3 10.638																		
72 Hata 85.49639 25.49042 Bakhtiyarpur Patna Handpump 8.22 804 514.56 0 207.4 70.92 0.52 52.92 38.97 205 38 74 Malkburt/DG 85.30997 25.5737 Raghopur Vaishali Dugwell 7.83 882 564.48 0 237.9 70.92 0.53 70.11 38.93 315 70 75 JagdispurtHandpump 85.38222 25.55705 Raghopur Vaishali Handpump 7.96 664 424.96 0 207.4 49.644 0.37 50.17 34.22 155 52 76 Raghopurt/Wild 85.38222 25.55705 Raghopurt Vaishali Handpump 8.18 379 242.56 0 201.3 10.638 0.44 1.421 2.60 107 7.83 882 54.44 1.421 2.60 175 50 78 Mcdanchowk 85.342 25.5795 Raghopurt Vaishal						Patna	0	-			*							
73 Gyaspur 85.44611 25.50707 Bakhtiyarpur Patna Handpump 8.32 531 339.84 0 25.01 49.644 0.46 50.97 6.06 195 16 74 Malikpur(DG) 85.30997 25.5737 Raghopur Vaishali Dugwell 7.83 882 564.48 0 237.9 70.92 0.53 70.11 38.93 21 55 76 Raghopur(Handpump) 85.38222 25.55705 Raghopur Vaishali Handpump 8 690 441.6 0 231.8 35.46 0.34 41.21 2.81 260 60 77 Raghopur(DW) 85.38222 25.5592 Raghopur Vaishali Dugwell 8.18 379 242.56 0 201.3 10.638 0.44 14.21 2.69 177 8.53242 25.5592 Raghopur Vaishali Handpump 8.0 250.1 6.7374 0.28 7.83.7 100.38 38 352 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>Patna</td> <td>Handpump</td> <td></td> <td></td> <td></td> <td>ů</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						Patna	Handpump				ů							
74 Malikpur(DG) 85.30997 25.5737 Raghopur Vaishali Dugwell 7.83 882 564.48 0 237.9 7.092 0.53 70.11 38.93 315 70 75 Jagdispur(Handpump) 85.3655 25.5737 Raghopur Vaishali Handpump 7.96 664 424.96 0 207.4 49.644 0.37 50.17 34.22 155.55 50 Raghopur(Handpump) 85.38222 25.55705 Raghopur Vaishali Handpump 8.18 379 242.56 0 201.3 10.638 0.44 14.21 2.69 175 50 78 Mcdanchowk 85.3424 25.5502 Raghopur Vaishali Handpump 7.91 445.92 0 274.5 19.1484 0.62 96.72 8.3.83 56 92 80 Sheetalpur 84.98281 25.76695 Dighwara Saran Handpump 8.1 967 618.88 0 286.7 78.012 0.41<			85.49639		Bakhtiyarpur	Patna	Handpump			514.56	0		70.92			38.97		
75 Jagdispur(Handpump) 85.33655 25.5737 Raghopur Vaishali Handpump 7.96 664 424.96 0 207.4 49.644 0.37 50.17 34.22 155 52 76 Raghopur(Handpump) 85.38222 25.55705 Raghopur Vaishali Handpump 8 690 441.6 0 231.8 35.46 0.34 41.72 28.13 260 60 77 Raghopur(DW) 85.38222 25.55705 Raghopur Vaishali Handpump 8.01 747 478.08 0 250.1 67.374 0.28 77.37 7.49 300 38 79 Govindchowk 85.18478 25.74033 Sonepur Saran Handpump 8.3 532 340.48 18 244 14.184 0.62 96.72 38.38 365 92 80 Shequr 84.98281 25.75694 Dighwara Saran Handpump 8.1 5967 618.88 0 286	_				Bakhtiyarpur		Handpump				0							-
76 Raghopur(Handpump) 85 38222 25.5705 Raghopur Vaishali Handpump 8 690 441.6 0 231.8 35.46 0.34 41.72 28.13 260 60 77 Raghopur(DW) 85.38222 25.55705 Raghopur Vaishali Dugwell 8.18 379 242.56 0 201.3 10.638 0.44 14.21 2.69 175 50 78 Medanchowk 85.3242 25.5592 Raghopur Vaishali Handpump 8.01 747 478.08 0 250.1 67.374 0.28 77.37 7.49 300 38 80 Sheetalpur 85.02886 25.75695 Dighwara Saran Handpump 8.3 532 340.48 18 244 14.184 0.5 42.68 0.59 210 24 81 Syedpur 84.48181 25.74023 Chapra Saran Handpump 8.04 1618 1035.52 0 402.67	-	1			Raghopur		Dugwell				-							
77 Raghopur(DW) 85.38222 25.55705 Raghopur Vaishali Dugwell 8.18 379 242.56 0 201.3 10.638 0.44 14.21 2.69 175 50 78 Medanchowk 85.38222 25.5592 Raghopur Vaishali Handpump 8.01 747 478.08 0 250.1 67.374 0.28 77.37 7.49 300 38 79 Govindchowk 85.18478 25.74033 Sonepur Saran Handpump 7.98 1478 945.92 0 274.5 191.484 0.62 96.72 38.38 365 92 80 Sheetalpur 84.98281 25.75694 Dighwara Saran Handpump 8.15 967 618.88 0 286.7 78.012 0.41 63.71 38.7 200 34 83 Inai 84.68114 25.74023 Chapra Saran Handpump 8.04 6622 398.08 0 192.4 <		Jagdispur(Handpump)			Raghopur	Vaishali	1 1			424.96	0							
78 Medanchowk 85.3242 25.5592 Raghopur Vaishali Handpump 8.01 747 478.08 0 250.1 67.374 0.28 77.37 7.49 300 38 79 Govindchowk 85.18478 25.74033 Sonepur Saran Handpump 7.98 1478 945.92 0 274.5 191.484 0.62 96.72 38.38 365 92 80 Sheetalpur 85.02886 25.75694 Dighwara Saran Handpump 8.3 532 340.48 18 244 14.184 0.62 96.72 38.38 365 92 81 Syedpur 84.48181 25.76094 Dighwara Saran Handpump 8.04 1618 1035.52 0 402.6 209.214 0.67 129.42 38.98 535 54 83 Inai 84.68114 25.70019 Revelganj Saran Handpump 8.04 622 398.08 0 195.2 <td< td=""><td>76</td><td></td><td></td><td></td><td>Raghopur</td><td>Vaishali</td><td>Handpump</td><td></td><td></td><td></td><td>0</td><td>231.8</td><td>35.46</td><td></td><td></td><td></td><td></td><td></td></td<>	76				Raghopur	Vaishali	Handpump				0	231.8	35.46					
79 Govindchowk 85.18478 25.74033 Sonepur Saran Handpump 7.98 1478 945.92 0 274.5 191.484 0.62 96.72 38.38 365 92 80 Sheetalpur 85.02886 25.75695 Dighwara Saran Handpump 8.3 532 340.48 18 244 14.184 0.5 42.68 0.59 210 24 81 Syedpur 84.98281 25.75694 Dighwara Saran Handpump 8.15 967 618.88 0 286.7 78.012 0.41 63.71 38.7 200 34 82 Mahadipur 84.68114 25.70019 Revelganj Saran Handpump 8.04 1618 1035.52 0 402.6 202.5668 0.6 122 7.37 8.98 53 54 83 Inai 84.68114 25.7019 Revelganj Saran Handpump 8.04 622 398.08 0 195.2 <td></td> <td>Raghopur(DW)</td> <td></td> <td></td> <td>Raghopur</td> <td></td> <td>U</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Raghopur(DW)			Raghopur		U				0							
80Sheetalpur85.0288625.75695DighwaraSaranHandpump8.3532340.481824414.1840.542.680.592102481Syedpur84.9828125.75694DighwaraSaranHandpump8.15967618.880286.778.0120.4163.7138.72003482Mahadipur84.8418125.74023ChapraSaranHandpump8.0416181035.520402.6209.2140.67129.4238.985355483Inai84.6811425.79019RevelganjSaranHandpump8.11514968.960433.1205.6680.61227.374003884Nagri gaon84.7731725.80688RevelganjSaranHandpump8.04622398.080195.242.5520.451.2329.61654285Nawada Khurd85.1673325.62364HajipurVaishaliHandpump8.0814759440353.8173.7540.7899.7638.054057886Mahar(DG)85.4805725.6404DesriVaishaliHundpump8.32856547.840.2262.353.190.8778.7538.151002487Khurampur85.2486525.6404DesriVaishaliHandpump8.261328849.920341.6109.9260.75<	78		85.3242		Raghopur	Vaishali				478.08	0		67.374					
80Sheetalpur85.0288625.75695DighwaraSaranHandpump8.3532340.481824414.1840.542.680.592102481Syedpur84.9828125.75694DighwaraSaranHandpump8.15967618.880286.778.0120.4163.7138.72003482Mahadipur84.4818125.74023ChapraSaranHandpump8.0416181035.520402.6209.2140.67129.4238.985355483Inai84.6811425.79019RevelganjSaranHandpump8.11514968.960433.1205.6680.61227.374003884Nagri gaon84.7731725.80688RevelganjSaranHandpump8.04622398.080195.242.5520.451.2329.61654285Nawada Khurd85.1673325.62364HajipurVaishaliHandpump8.0814759440353.8173.7540.7899.7638.0540.57886Mahar(DG)85.4805725.6404DesriVaishaliHundpump8.32856547.840.2262.3351.90.8778.7538.151002487Khurampur85.32843825.67369BidupurVaishaliHandpump8.28132.8849.920341.6109.926 <td< td=""><td>79</td><td>Govindchowk</td><td>85.18478</td><td></td><td>Sonepur</td><td>Saran</td><td>Handpump</td><td></td><td></td><td>945.92</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	79	Govindchowk	85.18478		Sonepur	Saran	Handpump			945.92	0							
81Syedpur84.9828125.75694DighwaraSaranHandpump8.15967618.880286.778.0120.4163.7138.72003482Mahadipur84.8418125.74023ChapraSaranHandpump8.0416181035.520402.6209.2140.67129.4238.985355483Inai84.6811425.79019RevelganjSaranHandpump8.11514968.960433.1205.6680.61227.374003884Nagri gaon84.7731725.80688RevelganjSaranHandpump8.04622398.080195.242.5520.451.2329.61654285Nawada Khurd85.1673325.62366HajpurVaishaliHandpump8.0814759440353.8173.7540.7899.7638.054057886Mahar(DG)85.4805725.62374MehnarVaishaliHandpump8.32856547.840.2262.353.190.8778.7538.151002487Khurampur85.4286525.6404DesriVaishaliHandpump8.261328849.920341.6109.9260.75132.478.883353089Pakauli85.2843825.67369BidupurVaishaliHandpump8.13902577.280237.995.7420	80	Sheetalpur				Saran					18							
82Mahadipur84.8418125.74023ChapraSaranHandpump8.0416181035.520402.6209.2140.67129.4238.985355483Inai84.6811425.79019RevelganjSaranHandpump8.11514968.960433.1205.6680.61227.374003884Nagri gaon84.7731725.80688RevelganjSaranHandpump8.04622398.080195.242.5520.451.2329.61654285Nawada Khurd85.1673325.62366HaipurVaishaliHandpump8.04622398.080195.242.5520.451.2329.61654285Nawada Khurd85.1673325.62366HaipurVaishaliHandpump8.04167944035.817.7540.7899.7638.054057886Mahnar(DG)85.4805725.62374MehnarVaishaliDugwell8.11980627.2024485.107378.7538.151002487Khurampur85.4286525.6404DesriVaishaliHandpump8.261328849.920341.6109.9260.75132.478.883353089Pakauli85.2843825.67369BidupurVaishaliHandpump8.13902577.280237.995.7420.5168	81		84.98281	25.75694	Dighwara	Saran			967	618.88	0	286.7	78.012	0.41	63.71	38.7	200	34
83Inai84.6811425.79019RevelganjSaranHandpump8.11514968.960433.1205.6680.61227.374003884Nagri gaon84.7731725.80688RevelganjSaranHandpump8.04622398.080195.242.5520.451.2329.61654285Nawada Khurd85.1673325.62366HajipurVaishaliHandpump8.0814759440353.8173.7540.7899.7638.054057886Mahnar(DG)85.4805725.62374MehnarVaishaliDugwell8.11980627.2024485.1040.682.4335.121604287Khurampur85.4286525.6404DesriVaishaliHandpump8.32856547.840.2262.353.190.8778.7538.151002488Khalsa chowk85.3779725.64038BidupurVaishaliHandpump8.261328849.920341.6109.9260.75132.478.883353089Pakuui85.2843825.67369BidupurVaishaliHandpump8.13902577.280237.995.7420.5168.1432.122953690Rajpura85.642625.4589BarhPatnaDugwell7.262450156808172200.161	82	Mahadipur	84.84181	25.74023	Chapra	Saran		8.04	1618	1035.52	0	402.6	209.214	0.67	129.42		535	54
84Nagri gaon84.7731725.80688RevelganjSaranHandpump8.04622398.080195.242.5520.451.2329.61654285Nawada Khurd85.1673325.62366HajipurVaishaliHandpump8.0814759440353.8173.7540.7899.7638.054057886Mahnar(DG)85.4805725.62374MehnarVaishaliDugwell8.11980627.2024485.1040.682.4335.121604287Khurampur85.4286525.6404DesriVaishaliHandpump8.32856547.840.2262.353.190.8778.7538.151002488Khalsa chowk85.3779725.64038BidupurVaishaliHandpump8.261328849.920341.6109.9260.75132.478.883353089Pakauli85.2843825.67369BidupurVaishaliHandpump8.13902577.280237.995.7420.5168.1432.122953690Rajpura85.642625.4589BarhPatnaDugwell7.262450156808172200.16161469705491Acchuara85.656425.4517BarhPatnaHandpump7.71666245.6240177210.332		Inai	84.68114	25.79019	Revelganj	Saran		8.1		968.96	0	433.1		0.6	122	7.37	400	
85Nawada Khurd85.1673325.62366HajipurVaishaliHandpump8.0814759440353.8173.7540.7899.7638.054057886Mahnar(DG)85.4805725.62374MehnarVaishaliDugwell8.11980627.2024485.1040.682.4335.121604287Khurampur85.4286525.6404DesriVaishaliHandpump8.32856547.840.2262.353.190.8778.7538.151002488Khalsa chowk85.3779725.64038BidupurVaishaliHandpump8.261328849.920341.6109.9260.75132.478.883353089Pakauli85.2843825.67369BidupurVaishaliHandpump8.13902577.280237.995.7420.5168.1432.122953690Rajpura85.642625.4589BarhPatnaDugwell7.262450156808172200.16161469705491Acchuara85.666425.4617BarhPatnaHandpump7.71666426.240177210.332221454693Alaknath (Chondi)85.698525.4701BarhPatnaHandpump8.57479306.569195530.041001	84	Nagri gaon	84.77317	25.80688		Saran		8.04	622	398.08	0	195.2	42.552	0.4	51.23		165	42
86Mahnar(DG)85.4805725.62374MehnarVaishaliDugwell8.11980627.2024485.1040.682.4335.121604287Khurampur85.4286525.6404DesriVaishaliHandpump8.32856547.840.2262.353.190.8778.7538.151002488Khalsa chowk85.3779725.64038BidupurVaishaliHandpump8.261328849.920341.6109.9260.75132.478.883353089Pakauli85.2843825.67369BidupurVaishaliHandpump8.13902577.280237.995.7420.5168.1432.122953690Rajpura85.642625.4589BarhPatnaDugwell7.262450156808172200.16161469705491Acchuara85.655125.4599BarhPatnaHandpump8.55443283.523116320.2541119901092Dahaur85.666425.4617BarhPatnaHandpump7.71666426.240177210.332221454693Alaknath (Chondi)85.698525.4701BarhPatnaHandpump8.57479306.569195530.0410011510 <t< td=""><td>85</td><td></td><td></td><td>25.62366</td><td>Hajipur</td><td>Vaishali</td><td></td><td>8.08</td><td>1475</td><td>944</td><td>0</td><td>353.8</td><td>173.754</td><td>0.78</td><td>99.76</td><td>38.05</td><td>405</td><td>78</td></t<>	85			25.62366	Hajipur	Vaishali		8.08	1475	944	0	353.8	173.754	0.78	99.76	38.05	405	78
87Khurampur85.4286525.6404DesriVaishaliHandpump8.32856547.840.2262.353.190.8778.7538.151002488Khalsa chowk85.3779725.64038BidupurVaishaliHandpump8.261328849.920341.6109.9260.75132.478.883353089Pakauli85.2843825.67369BidupurVaishaliHandpump8.13902577.280237.995.7420.5168.1432.122953690Rajpura85.642625.4589BarhPatnaDugwell7.262450156808172200.16161469705491Acchuara85.655125.4599BarhPatnaHandpump8.55443283.523116320.254119901092Dahaur85.666425.4617BarhPatnaHandpump7.71666426.240177210.332221454693Alaknath (Chondi)85.698525.4701BarhPatnaHandpump8.57479306.569195530.041001151094Bajidpur85.708125.4656BarhPatnaDugwell8.071532980.4803841880.73874344530	86				21			8.11	980	627.2	-	244	85.104	0.6	82.43	35.12	160	42
88Khalsa chowk85.3779725.64038BidupurVaishaliHandpump8.261328849.920341.6109.9260.75132.478.883353089Pakauli85.2843825.67369BidupurVaishaliHandpump8.13902577.280237.995.7420.5168.1432.122953690Rajpura85.642625.4589BarhPatnaDugwell7.262450156808172200.16161469705491Acchuara85.655125.4599BarhPatnaHandpump8.55443283.523116320.254119901092Dahaur85.666425.4617BarhPatnaHandpump7.71666426.240177210.332221454693Alaknath (Chondi)85.698525.4701BarhPatnaHandpump8.57479306.569195530.041001151094Bajidpur85.708125.4656BarhPatnaDugwell8.071532980.4803841880.73874344530					Desri		Handpump		856	547.84	0.2			0.87			100	24
89Pakauli85.2843825.67369BidupurVaishaliHandpump8.13902577.280237.995.7420.5168.1432.122953690Rajpura85.642625.4589BarhPatnaDugwell7.262450156808172200.16161469705491Acchuara85.655125.4599BarhPatnaHandpump8.55443283.523116320.254119901092Dahaur85.666425.4617BarhPatnaHandpump7.71666426.240177210.332221454693Alaknath (Chondi)85.698525.4701BarhPatnaHandpump8.57479306.569195530.041001151094Bajidpur85.708125.4656BarhPatnaDugwell8.071532980.4803841880.73874344530	88				Bidupur	Vaishali		8.26			0	341.6					335	30
90Rajpura85.642625.4589BarhPatnaDugwell7.262450156808172200.16161469705491Acchuara85.655125.4599BarhPatnaHandpump8.55443283.523116320.254119901092Dahaur85.666425.4617BarhPatnaHandpump7.71666426.240177210.332221454693Alaknath (Chondi)85.698525.4701BarhPatnaHandpump8.57479306.569195530.041001151094Bajidpur85.708125.4656BarhPatnaDugwell8.071532980.4803841880.73874344530				25.67369		Vaishali		8.13	902		0	237.9	95.742	0.51				36
91Acchuara85.655125.4599BarhPatnaHandpump8.55443283.523116320.254119901092Dahaur85.666425.4617BarhPatnaHandpump7.71666426.240177210.332221454693Alaknath (Chondi)85.698525.4701BarhPatnaHandpump8.57479306.569195530.041001151094Bajidpur85.708125.4656BarhPatnaDugwell8.071532980.4803841880.73874344530	90	Rajpura				Patna	Dugwell				0	817		0.16	161	46	970	
92Dahaur85.666425.4617BarhPatnaHandpump7.71666426.240177210.332221454693Alaknath (Chondi)85.698525.4701BarhPatnaHandpump8.57479306.569195530.041001151094Bajidpur85.708125.4656BarhPatnaDugwell8.071532980.4803841880.73874344530	91				Barh	Patna	Handpump	8.55		283.52	3		32	0.25	41	19		
93 Alaknath (Chondi) 85.6985 25.4701 Barh Patna Handpump 8.57 479 306.56 9 195 53 0.04 10 0 115 10 94 Bajidpur 85.7081 25.4656 Barh Patna Dugwell 8.07 1532 980.48 0 384 188 0.73 87 43 445 30		Dahaur			Barh	Patna		7.71			0		21	0.3		22	145	46
94 Bajidpur 85.7081 25.4656 Barh Patna Dugwell 8.07 1532 980.48 0 384 188 0.73 87 43 445 30	93	Alaknath (Chondi)	85.6985	25.4701	Barh	Patna		8.57		306.56	9			0.04	10	0	115	10
	94			25.4656	Barh	Patna			1532	980.48	0	384	188	0.73	87	43	445	30
	95		85.7167	25.4789	Barh	Patna	Handpump	8.39	565	361.6	6	201		0.3	27	0	155	20
96 Shahri 85.7284 25.4746 Barh Patna Handpump 8.51 808 517.12 9 293 92 0 47 0 260 18	96	Shahri	85.7284	25.4746	Barh	Patna		8.51	808	517.12	9		92	0	47	0	260	18
97 Amarpur (Ranabigha) 85.736 25.4618 Barh Patna Dugwell 7.62 1386 887.04 0 378 131 0.28 68 44 460 66	97	Amarpur (Ranabigha)		25.4618	Barh	Patna			1386	887.04	0			0.28	68	44	460	66
98 Agwanpur 85.7317 25.4514 Barh Patna Dugwell 7.57 1887 1207.68 0 458 287 1.45 118 12 710 54	98		85.7317	25.4514	Barh	Patna	Dugwell	7.57	1887	1207.68	0	458	287	1.45	118	12	710	54
99 Agwanpur 85.7293 25.4524 Barh Patna Handpump 8.51 449 287.36 12 171 39 0.05 36 0 110 10	99		85.7293	25.4524	Barh	Patna	Handpump	8.51		287.36	12	171		0.05	36	0	110	10
100 Jamunichak 85.7172 25.4599 Barh Patna Handpump 8.46 978 625.92 9 153 152 0.65 71 40 310 22	100	Jamunichak	85.7172	25.4599	Barh	Patna			978	625.92	9		152	0.65	71	40	310	22
101 Kachahri Chowk 85.6924 25.4638 Barh Patna Handpump 8.64 610 390.4 12 159 64 0.39 60 1.6 160 16	101	Kachahri Chowk	85.6924	25.4638	Barh	Patna		8.64	610	390.4	12	159	64	0.39	60	1.6	160	16
102 Bachiari Malahi 85.6787 25.4618 Barh Patna Handpump 8.48 444 284.16 6 207 28 0.26 1.5 0 130 16	102	Bachiari Malahi	85.6787		Barh	Patna		8.48	444	284.16	6	207	28		1.5	0	130	16
103 Hasan Chak 85.6488 25.4593 Barh Patna Handpump 8.59 482 308.48 12 183 25 0.51 36 2.7 105 8	103					Patna					12					2.7		8

Annexure-III a

Sl. No	Location	Block	District	Latitude	Longitude	Type of well	Concentration (in ppb)
1	Maurah Toli chowk	Bachwara	Begusarai	25.59239	85.88353	TW	18.23
2	Rashidpur	Bachwara	Begusarai	25.63564	85.85669	TW	20.65
3	Barauni	Barauni		25.47158	86.03267	TW	13.80
			Begusarai		86.00006	TW	
4	Rajwara Barauni Maa Durga	Barauni	Begusarai	25.46472	86.00006	1 W	15.97
5	Hall	Barauni	Begusarai	25.47008	86.98341	TW	12.54
6	Gahara	Barauni	Begusarai	25.45013	86.01494	TW	39.79
7	Badalpur Chowk	Barauni	Begusarai	25.45012	86.01503	TW	10.48
8	Naya Nagar, Dularpur	Teghra	Begusarai	25.51361	85.92417	TW	15.07
9	Krishna chauk More	Desri	Vaishali	25.66689	85.49306	TW	13.63
10	Tatma Toli	Shahdai Buzurg	Vaishali	25.66389	85.45019	TW	23.14
11	Malikpur	Raghopur	Vaishali	25.68750	85.45361	TW	22.19
12	Kabir chauraha	Raghopur	Vaishali	25.65583	85.36611	TW	16.60
13	Block office raghopur	Raghopur	Vaishali	25.56668	85.33354	TW	14.79
14	Fatehpur road	Raghopur	Vaishali	25.55023	85.33361	TW	22.03
15	policestation	Raghopur	Vaishali	25.56671	85.33352	TW	44.89
16	Rustampur	Raghopur	Vaishali	25.62389	85.284	TW	41
17	Maniarpur	Vidyapatinagar	Samastipur	25.64325	85.77864	TW	15.47
18	Chhapar	Mohiuddinnagar	Samastipur	25.55428	85.66814	TW	26.85
19	Kursaha	Mohiuddinnagar	Samastipur	25.55681	80.68164	TW	10.69
20	Dubaha paschim tola	Mohiuddinnagar	Samastipur	25.56986	80.72675	TW	32.33
21	Mohanpur	Mohanpur	Samastipur	25.56956	85.58639	TW	24.21
22	Rasalpur purvi	Mohanpur	Samastipur	25.55608	85.58047	TW	19.41

As concentration ranges from 10 – 50 ppb _____

23	Ala Chowk	Mohanpur	Samastipur	25.55919	85.59694	TW	12.56
24	Dumri	Mohanpur	Samastipur	25.56028	85.60483	TW	36.55
25	Jalalpur	Mohanpur	Samastipur	25.55847	85.61425	TW	21.29

Annexure-IIIb

As concentration ranges from > 50 ppb

Sl. No	Location	Block	District	Latitude	Longitude	Type of well	Concentration (in ppb)
1	Marwa	Birpur	Bhagalpur	25.3988	86.9222	TW	140.01
2	Bihat	Barauni	Begusarai	25.45742	86.0138	TW	51.53

Annexure-IV

Location details of points where VES has been conducted

Dist	Block	Location	Long	Lat	Elvn (m)	AB (m)	r1	r2	r3	r4	r5	r6	r7	r8	h1	h2	h3	h4	h5	h6	h7	Depth	Topo sheet no
Samastipur	Mohanpur	dumri dakshin	25.54761	85.59558	40	460	29	72	38	54					2.6	10.6	115.5					128.7	72G/10
Samastipur	Mohiddinnager	jaunapur	25.53131	85.62614	34	460	100	350	56	100					2.7	14.6	118.3					135.5	72G/10
Samastipur	Mohiddinnager	ramchandrpur	25.56297	85.63608	31	520	34	30	217	50	143	32	1880		1.8	1.8	7.2	64	12.8	66		153.6	72G/10
Samastipur	Mohiddinnager	chaper	25.53886	85.65739	34	460	82	410	60	34	135				1.7	12	161	52.5				227.2	72G/10
Samastipur	Mohiddinnager	harail	25.56614	85.67161	28	520	62	19	65	45	132	22.4			1.5	3	12	18.2	22.4	38.8		95.9	72G/10
Samastipur	Patori	hetampur	25.58389	85.56136	34	460	42	294	62	34	100				2.7	4.05	37.8	161				205.6	72G/10
Samastipur	Patori	chaksima	25.61153	85.58047		520	18	9	18	13	27	21	52		1.65	1	2.79	15.2	4.2	92.4		155	72G/10
Samastipur	Patori	madhopur	25.58192	85.59019	36	520	19	57	29	67					1.8	27	192					220.8	72G/10
Saran	Chapra	salempur	25.73731	84.85917	41	600	15	12	32	21	74				1.6	2.88	13.5	82.5				100.5	72C/14
Saran	Chapra	badalpur	25.74478	84.81458	37	460	68	14	24	17	60				3.3	22.4	41.65	28.8				96.2	72C/14
Saran	Chapra	jp university campus	25.78094	84.77163	31	460	26	39	18	41					2.1	9.24	48					59.34	72C/13
Saran	Chapra	mathwalia	25.79975	84.68839	36	460	30	20	35	20	84				1.8	5.4	4.76	46.8				58.8	72G/9
Saran	Dariapur	Nizanchawk	25.78794	85.05728	51	520	21	13	30	35					1.7	4.76	72.8					79.26	72G/1
Saran	Dighwara	Sithapur Chatter Chappra	25.79064	85.03611	42	520	15	23	30	10	75	21			1.9	4.3	16	21.3	92			135.5	72G/1
Saran	Dighwara	dhigwara	25.75269	85.01536	33	460	15	51	25						4.9	161.7						166.6	72G/1
Saran	Dighwara	boddha chapra	25.74747	84.95456	37	460	8	20	75	43	230				3.6	10.08	55.1	40				108.8	72C/14
Saran	Dighwara	kam diara	25.73031	84.89433	45	520	140	350	22.4	41					2.45	15.9	166					184.4	72C/14
Saran	Sonpur	Sabbalpur	25.67756	85.18692		200					1									1			72G/2
Saran	Sonpur	Sabbalpur Uttari	25.67964	85.16481	43	400	14	27	11	31	9				1.8	3.1	2.9	62.9				70.7	72G/2
Saran	Sonpur	Palehza	25.69531	85.14989	49	460	14	47	90						3	171						174	72G/2
Saran	Sonpur	Gangajal	25.70397	85.12764	42	520	15	38	50	24	48	25			1.15	1.73	27.2	41.6	112.5			184.53	72G/2

Contraction of the second																						
Saran	Sonpur	Gangajal	25.69753	85.12156	41	460																72G/2
Saran	Sonpur	Dumri	25.76936	85.08331	38	520	12	8	82	29	78				1.5	5.7	15.12	150.8			173.12	72G/1
Saran	Sonpur	Govindchowk	25.72456	85.13389	44	400	18	14	19	36	54				1.9	6.65	54.6	25.42			88.57	72G/2
Saran	Sonpur	Murthan	25.74308	85.13256	38	400	18	12	68	25					2.2	5.94	48				56.14	72G/2
Vaishali	Bidhupur	Kanpura	25.66628	85.23961	34	460	20	13	49	20	74	47			1.2	5.2	5	59.5	35.1		106	72G/6
Vaishali	Bidhupur	Saidpur Ganarh	25.66078	85.26097		600	16	13	21	10	24	22			1.2	2.2	22.1	39.2	27.7		92.4	72G/6
Vaishali	Bidhupur	Rahimapur	25.67261	85.27833	44	460	43	9	14	28	14				2.5	0.5	33.8	122.5			159.3	72G/6
Vaishali	Bidhupur	Doudnagar	25.66872	85.30572	50	520	6	21	9	28	26	50			1.22	1.53	1.64	9	94.54		107.93	72G/6
Vaishali	Bidhupur	Khitawal	25.64394	85.30606	40	460	24	12	27	14	63				1.52	6.23	19.2	37.2			64.15	72G/6
Vaishali	Bidhupur	Bidhupur	25.65814	85.32025	45	460	13	19.5	15.2	33					1.6	12.8	36.25				50.65	72G/6
Vaishali	Bidhupur	Bohuaza	25.69222	85.30753	36	200	9	22.5	45	25.6	72.5	18			1.25	6.5	16	19.5	20.7		64	72G/6
Vaishali	Bidhupur	Raghopur Chatrang	25.65219	85.34700	33	600	34	13.6	30	50					1.82	10.92	51.2				63.94	72G/6
Vaishali	Bidhupur	Harpur Gopal	25.65275	85.36822	45	520	21	13.65	50.75	14					1.5	42	110				153.5	72G/6
Vaishali	Bidhupur	Chechar	25.63300	85.37175	26	600	11	16.5	31	56	19	435			1.15	9.2	76.8	63.36	90		240.47	72G/6
Vaishali	Bidhupur	uproul kakrahat	25.67103	85.34956	23	520	47	19	58	17	33	18	58		2.3	6.7	5.5	21	67.2	96	198.7	72G/6
Vaishali	Bidhupur	kaly Anpur	25.67181	85.34033	32	600	31	39	19	58	35	28			1.3	4.81	7.44	30.8	168		212.4	72G/6
Vaishali	Bidhupur	chak Lalna	25.68231	85.32553	34	520	50	20	38	30	20				2.6	1.95	22.88	104.4			131.83	72G/6
Vaishali	Bidhupur	Mirapur	25.67067	85.22142	30	520	28	22	18	29					1.35	10.13	43				54.5	72G/6
Vaishali	Bidhupur	Gokulpur	25.59008	85.36133	31	400	70	350	88	61					1.4	7	27.5				35.9	72G/6
Vaishali	Dehri	Panapur	25.64342	85.39528	29	400	27	10.8	38.5						1.8	30.6					32.4	72G/6
Vaishali	Dehri	Mustafapur	25.62814	85.39019	26	600	8.2	12.3	22	45	20	170			1.45	6.53	24	150.4	44		226.4	72G/6
Vaishali	Dehri	Maniharpur	25.61083	85.39242	19	600	15	6	9	42.5	13	760			1.8	6.3	18.02	67.5	102		195.6	72G/6
Vaishali	Dehri	Babangama	25.62119	85.41294	27	460	57	86	65	42					1.32	8.6	78.8				88.7	72G/6
Vaishali	Dehri	Jahangirpur	25.61411	85.41106	21	200																72G/6
Vaishali	Dehri	chak Mahammadpur	25.67006	85.39939	25	520	68	34	15	50	21	56			1.34	3	5.6	46	62.1		118.3	72G/6
Vaishali	Dehri	Madhoul	25.65233	85.41450	34	520	42	13	22	29					2.1	10	36				48.1	72G/6
Vaishali	Dehri	Talia	25.68809	85.38550	34	460	43	22	63	37	25			1	3.4	9.2	24	155.1			192	72G/6

2																							
Vaishali	Dehri	Upkroul	25.68736	85.42286	27	460	26	13	43	29	27	34			2	1.6	16.7	20	77.4			117.7	72G/6
Vaishali	Hazipur	Terasia	25.64811	85.21044	36	460	65	81	41						1.35	28.35						29.7	72G/6
Vaishali	Hazipur	sultanpur	25.69139	85.25514	42	600	24	19	25	28	41				1.7	6.8	6.1	57				71.6	72G/6
Vaishali	Hazipur	chak ashi	25.68314	85.28975	42	600	27	11	24	29					1.92	7.7	16					25.6	72G/6
Vaishali	Hazipur	chak yari	25.70239	85.28089	33	460	61	24	68	31	190	42	18		2.7	3	5.4	13.5	8.4	80		113	72G/6
Vaishali	Hazipur	Panapur langa	25.72317	85.27522	31	460	49	25	68	27	15				2.3	10.8	10.4	84				107.5	72G/6
Vaishali	Hazipur	Subhai	25.72058	85.24650	37	160																	72G/2
Vaishali	Hazipur	Daulatpur	25.72769	85.23803	36	400	54	11	55	33					1.6	0.96	262.5					265.1	72G/2
Vaishali	Hazipur	Harsarganj	25.71289	85.20819	40	320	10	6.5	27	65	13				1.7	2.6	11	39.6				54.9	72G/2
Vaishali	Hazipur	Ghouspur	25.74231	85.21242	28	600	39	31	64	23	27				1.6	7.2	44.7	18				71.5	72G/2
Vaishali	Hazipur	Akhilabad	25.72756	85.19328	26	600	36	29	60	32	16				1.7	6.8	4.9	135				148.4	72G/2
Vaishali	Hazipur	Manua	25.75214	85.20711	33	600	43	22	47	30	40	114			1.4	8.4	20.24	84	62.56			175.96	72G/1
Vaishali	Mahnar	sultanpur	25.61686	85.46244	34	460	29	17	48	16	58	29			1.2	9.12	5.25	7.8	121.5			144.8	72G/6
Vaishali	Raghopur	Diwantak	25.64658	85.24781	35	600	58	1160	94	21	75	41	38	105	1.3	0.62	13.34	7	33.6	69.44	100	225.28	72G/6
Vaishali	Raghopur	Terasia	25.64389	85.21978	44	460	72	252	30	20					1.6	7.2	35.65					44.45	72G/6
Vaishali	Raghopur	Sabbalpur	25.62883	85.22261	45	460	47	118	21	32	72				1.6	13.6	1.75	94.4				111.3	72G/6
Vaishali	Raghopur	Saidebad	25.54258	85.29056	40	600	49	245	69	46	70	39			2	2.35	28.6	87.5	72			192.5	72G/6
Vaishali	Raghopur	Saidebad	25.54972	85.31767	29	600	84	126	48	84	53	90	42		2	8.4	69.8	49.4	87.8	55		272.4	72G/6
Vaishali	Raghopur	Chandpura	25.54997	85.34394	29	600	30	105	93	53	40				2.2	3.96	40.5	240				286.7	72G/6
Vaishali	Raghopur	Paharpur	25.54886	85.36453	28	520	28	280	51						2.5	17.5						20	72G/6
Vaishali	Raghopur	Fatehpur	25.57267	85.34883	35	520	43	151	65	48					3	7.8	31.5					42.3	72G/6
Vaishali	Sahdal Buzurg	Tariapur	25.62183	85.44256	31	600	17	11	20	14	43	23	65		1.65	2.5	5	11	46.5	100		166.65	72G/6
Vaishali	Sahdal Buzurg	Wajijpur	25.64767	85.44839	35	520	58	17	15	25	58				1.4	12.6	16.3	112				142.3	72G/6
Vaishali	Sahdal Buzurg	Ramganj	25.66583	85.45942	27	600	23	15	23	14	27				1.9	3.6	13.7	14.6				33.8	72G/6

Annexure-V

National aquifer mapping (NAM) exploration details

(as per 12 point progress format in Aquifer Mapping manual)

Unique ID	
Village	Gyaspur
Taluka/Block	Bakhtiyarpur
District	Patna
Toposheet No.	72G/7
Lat	25.4737
Long	85.4689
RL (m amsl)	
Drilled Depth	250
Casing	194
SWL (m bgl)	2.69
Discharge (lps)	54.06
Date/Year	March 2006

1. FORMAT FOR LITHOLOG

Depth ra (m bg	0	Thickness (m)	Litholog
From	То		
0	25	25	Silt with fine sand, brown in colour
25	41	16	Fine to medium sand, grey colour
41	54	13	Medium to coarse sand, grey colour
54	82	28	Coarse sand with occasional gravel beds, grey colour
82	88	6	Clay sand with thin beds of fine sand, grey colour
88	223	135	Coarse to very coarse sand with gravel, grey colour
223	230	7	Medium to coarse sand with occasional gravels, grey colour
230	250	20	Coarse to very coarse sand with gravels, grey colour

Unique ID	
Village	Barh
Taluka/Block	Barh
District	Patna
Toposheet No.	72G/11
Lat	25.4735
Long	85.6919
RL (m amsl)	
Drilled Depth	274
Casing	230
SWL (m bgl)	4.4
Discharge (lps)	53.13
Date/Year	October 2006

Depth r (m bş		Thickness (m)	Litholog
From	To	(11)	
0	7	7	Clay, brown colour
7	13	6	Clay, black colour
13	33	20	Medium to coarse sand, light brown colour
33	38.5	5.5	Fine to medium sand with gravels and calcareous nodules, light grey colour
38.5	51	12.5	Fine to medium sand with gravels, calcareous and iron nodules, light grey
51	66	15	Medium to coarse sand with gravels, calcareous and iron nodules, light grey
66	103	37	Rock fragments mixed medium to coarse sand, light grey
103	109	6	Clay
109	126	17	Fine to medium sand with minor gravels, iron nodules, light brown colour
126	133	7	Fine to medium sand with calcareous material, light grey colour
133	150	17	Medium to coarse sand with calcareous material, light grey colour
150	162	12	Fine to medium sand, light grey colour
162	183	21	Medium to coarse sand with occasional gravels and calcareous materials, light grey colour
183	186	3	Silt sand, grey colour
186	196	10	Fine to medium sand with gravels, calcareous materials and iron nodules, grey colour
196	202	6	Fine to medium sand, grey colour
202	227	25	Medium to coarse sand with calcareous materials and gravels
227	257	30	Rock fragments with medium to coarse sand, grey colour
257	274	17	Medium to coarse sand with calcareous nodules, grey colour

Unique ID	
Village	Konhara Ghat
Taluka/Block	Hajipur
District	Vaishali
Toposheet No.	72G/2
Lat	25.724
Long	85.1996
RL (m amsl)	
Drilled Depth	300.15
Casing	
SWL (m bgl)	12.98
Discharge (lps)	176.2

-

Date/Year

Depth r	ango	Thickness	Litholog
(m bg		(m)	Littiolog
From	То		
0	7.15	7.15	Pieces of bricks
7.15	13.65	6.5	Clay, Sticky, reddish pink in colour
13.65	20.15	6.5	Clay with some calcareous nodules, pink in colour
20.15	26.65	6.5	Clay with fine to medium sand, light pink in colour
26.65	46.15	19.5	Clay with pieces of calcareous nodules, yellow in colour
46.15	56.15	10	Clay with frequent calcareous nodules, light yellow in colour
56.15	65.65	9.5	Sand, coarse grained with few gravels, sub angular. Little clay parting is present . light yellow in colour
65.65	72.15	6.5	Sand, coarse grained, sub-angular with non-plastic clay. Light brown in colour
72.15	85.15	13	Sand, medium to coarse, sub-angular with little clay. Light brown in colour
85.15	98.15	13	Sand, coarse grained with gravels, sub-angular. Brownish yellow in colour
98.15	130.65	32.5	Sand, coarse grained with gravels, sub-angular. Brownish yellow in colour
130.65	150.15	19.5	Sand, coarse grained with gravels, sub-angular. Light colour
150.15	163.15	13	Sand, coarse grained, gravels, sub-angular. Brownish little dark in colour
163.15	195.65	32.5	Clay, non-sticky, yellowish in colour
195.65	218.65	23	Clay with fine sand and some calcareous nodules. Light grey in colour
218.65	228.15	9.5	Sand, medium to coarse grained, sub-angular with clay parting. Grey in colour
228.15	247.65	19.5	Sand, coarse grained gravels with some calcareous nodules. Little clay is present. Yellow colour
247.65	254.15	6.5	Sand, coarse grained with some gravels and mud partings. Yellow colour
254.15	266.15	12	Clay, fine in nature with kankars. Grey colour
266.15	293.15	27	Clay with kankars. Yellow colour
293.15	300.15	7	Clay, grey in colour

Unique ID	
Village	Shahpur Patori
Taluka/Block	Patori
District	Samastipur
Toposheet No.	72G/10

Lat	25.6261
Long	85.5599
RL (m amsl)	
Drilled Depth	235
Casing	
SWL (m bgl)	3.85
Discharge (lps)	54.03
Date/Year	November 2008

Depth		Thickness	Litholog
(m b	gl)	(m)	
From	To		
0	5.5	5.5	Clay, black, thick, sticky
5.5	14.5	9	Clay, brown, thick, stiky
14.5	39.5	25	Pebble, coarse to medium grained, brown, irregular mixed
			with medium grained rock fragments
39.5	64.5	25	Clay, brown, thick, mixed with coarse grained rock
			fragments
64.5	74	9.5	Pebbles, black, coarse grained, irregular, mixed with coarse
			grained rock fragments
74	77	3	Sand, medium to fine grained, mixed with coarse grained
			pebbles of black color, irregular in size
77	83.25	6.25	Sand, medium to fine grained, mixes with medium to coarse
			grained black colored pebbles, irregular in size
83.25	95.75	12.5	Sand, medium to fine grained, mixed with medium to coarse
			grained brown colored pebbles
95.75	108.25	12.5	Sand, medium to fine grained
108.25	114.5	6.25	Pebbles, black, medium grained, mixed with medium to fine
			grained sand
114.5	120.75	6.25	Pebbles, black, medium grained, mixed with medium quartz
120.75	127	6.25	Clay, soft, light brown
127	133.25	6.25	Pebbles, medium grained, brown, mixed with quartz
133.5	152	18.75	Clay, soft, light brown
152	158.25	6.25	Pebbles, brown, medium grained, irregular
158.25	177	18.75	Clay, black thick
177	202	25	Clay, brown thick
202	208.25	6.25	Sand, medium to fine grained, mixed with medium grained
			pebbles
208.25	235	26.75	Clay, brown, medium soft

Unique ID	
Village	Vidyapati Nagar
Taluka/Block	Vidyapati Nagar
District	Samastipur
Toposheet No.	
Lat	25.6011
Long	85.7984
RL (m amsl)	
Drilled Depth	235
Casing	225
SWL (m bgl)	5.78
Discharge (lps)	15.77
Date/Year	August 2007

Depth r (m b		Thickness (m)	Litholog
From	To	(11)	
0	32	32	Clay
32	35	3	Fine sand
35	44	9	Sandy clay
44	46	2	Fine sand
46	64	18	Medium to coarse sand
64	84	20	Coarse sand with gravels
81	85	4	Medium to Coarse sand
85	87	2	Sticky clay
87	92	5	Sandy clay with gravels
92	94	2	Fine sand
94	96	2	Sandy clay
96	98	2	Fine sand
98	108	10	Coarse sand
108	130	22	Medium to coarse sand
130	132	2	Sandy clay
132	143	11	Sticky clay
143	147	4	Fine sand with gravels
147	149	2	Sticky clay
149	154	5	Coarse sand with gravels
154	169	15	Sticky clay
169	177	8	Sandy clay
177	184	7	Medium to coarse sand
184	194	10	Clay
194	201	7	Sandy clay
201	207	6	Fine sand
207	224	17	Fine to medium sand
224	228	4	Clay with gravels
228	235	7	Sandy clay

Unique ID	
Village	Madudabad
Taluka/Block	Mohinuddin Nagar
District	Samastipur
Toposheet No.	
Lat	25.5862
Long	85.7285
RL (m amsl)	
Drilled Depth	302
Casing	232
SWL (m bgl)	3.71
Discharge (lps)	57.78
Date/Year	February 2007

Depth ra (m bg		Thickness (m)	Litholog
From	To	(111)	
0	13.8	13.8	Black clay
13.8	25	11.2	Fine to medium sand, light grey colour
25	35	10	Fine to medium sand. Yellow colour
35	42	7	Medium to coarse sand with pebbles, yellow colour
42	45	3	Sandy clay
45	64	19	Fine to medium sand, yellow colour
64	82	18	Medium to coarse sand yellow colour
82	96	14	Coarse sand with gravels, yellow colour
96	137	41	Coarse sand, yellow colour
137	144	7	Medium to coarse sand, light yellow colour
144	169	25	Clayey sand, yellow colour
169	184	15	Fine sand, light yellow colour
184	198	14	Clay bed
198	217	19	Sandy clay, light yellow colour
217	221	4	Fine to medium sand, light grey colour
221	232	11	Coarse sand with gravels, light colour
232	302	70	Clay with occasional thin sand beds, light yellow colour

7. FORMAT FOR LITHOLOG

Unique ID	
Village	Gangajal
Taluka/Block	Sonepur
District	Saran
Toposheet No.	72G/2
Lat	25.7102
Long	85.161
RL (m amsl)	
Drilled Depth	196.7
Casing	175
SWL (m bgl)	
Discharge (lps)	
Date/Year	September 2008

Depth r (m b	0	Thickness (m)	Litholog
From	То		
0	6.5	6.5	Top soil with fine sand mixed with clay
6.5	25	18.5	Kankar with fine to medium sand
25	34.68	9.68	Fine clay (Yellow) mixed with Fine to Medium sand
34.68	40.91	6.23	Yellow clay mixed with fine sand
40.91	47.14	6.23	Yellow clay mixed with fine sand
47.14	53.38	6.24	Yellow clay, fin sand, medium sand and kankar
53.38	72.06	18.68	Medium sand mixed with kankar nodules
72.06	156.05	83.99	Fine to medium sand few percentage of Kankar
156.05	168.59	12.54	Fine sand mixed little clay (yellow)
168.59	174.81	6.22	Fine sand yellow colour
174.81	187.24	12.43	Light grey colour fine sand with kankar
187.24	196.7	9.46	Fine sand light colour mixed with clay

Unique ID	
Village	Narepur
Taluka/Block	Bachwara
District	Begusarai
Toposheet No.	
Lat	25.5947
Long	85.9164
RL (m amsl)	
Drilled Depth	278.75
Casing	

SWL (m bgl)	5.23
Discharge (lps)	23.4
Date/Year	March 2009

Depth r (m bş		Thickness (m)	Litholog
From	То	. ,	
0	13.25	13.25	Black non sticky clay
13.25	19.5	6	Medium sand
19.5	25.75	6.25	Clay mixed with medium to coarse sand
25.75	39	13.25	Fine to medium sand
39	50	11	Medium to coarse sand
50	69.5	19.5	Coarse kanker with quartz
69.5	82	12.5	Gray sand with coarse pieces
82	92	10	Clay with pieces of kankar
92	100.75	8.75	Coarse gray colour kankar
100.75	113.25	12.5	Medium to coarse sand with gray in colour
113.25	129	15.75	Medium to coarse clean sand
129	150	21	Broun colour clay with kankar
150	194.25	44.25	Sticky clay
194.25	209.75	15.5	Black sticky clay
209.75	222.25	12.5	Medium to coarse sand
222.25	234.75	12.5	Fine to medium sand
234.75	241	6.25	Brown clay
241	259.75	18.75	Clay mixed with fine sand
259.75	278.75	19	Clay yellowish in colour

Unique ID	
Village	Barauni Flag
Taluka/Block	Bachwara
District	Begusarai
Toposheet No.	
Lat	25.4643
Long	85.965

RL (m amsl)	
Drilled Depth	
Casing	253
SWL (m bgl)	5.23
Discharge (lps)	49.86
Date/Year	November 2009

Depth i (m b	0	Thickness (m)	Litholog	
From	То			
0	5.5	5.5	Clay, Surface clay, non sticky, gray colour	
5.5	7.5	2	Mix zone, Clayey sand, gray in colour	
7.5	15.5	8	Mix zone, Sandy clay, gray in colour	
15.5	21.25	5.75	Clay, gray in colour	
			Sand, Micaceous fine sand (typical present day	
21.25	27.5	6.25	Ganga sand), gray in colour	
27.5	33.75	6.25	Sand, Medium to coarse, brownish yellow sand with kankars	
33.75	46.25	12.5	Sand , Fine to medium brownish yellow sand with kankars.	
46.25	52.5	6.25	Sand, Medium to coarse, brownish yellow sand with kankars	
52.5	58.75	6.25	Sand, Coarse brownish yellow sand with kankars	
58.75	65	6.25	Sand, Fine brownish yellow sand with kankars	
65	90	25	Sand , Fine to coarse brownish yellow sand with the predominance of medium to coarse sands. Still coarse to gravel size kankars dominate over sands.	
90	112	22	Sand , Medium to coarse brownish yellow sands predominate with coarse to gravel size kankars and fine sand admixture.	
112	118.25	6.25	Sand , Fine to medium brownish yellow sand with few kankars and coarse sands.	
118.25	124.5	6.25	Sand , Fine to medium brownish yellow sand with greater proportion of kankars.	
124.5	127.5	3	Sand , Fine to medium brownish yellow sand with few kankars and coarse sands.	
127.5	146.25	18.75	Sand, Fine to medium brownish yellow sand with	

			greater proportion of kankars and coarse sands.
146.25	155.75	9.5	Sand , Fine to medium brownish yellow sand with medium sand predominating, less kankars. Coarse sands are basically sub-angular in nature.
155.75	165	9.25	Sand, Medium to coarse brownish yellow sand with less kankars.
165	187.75	22.75	Sand , Medium to coarse brownish yellow sand with more gravel size kankars.
187.75	233.75	46	Sand , Medium to coarse sand. Colour of sands changes with a more yellowish red tint on sands (basically feldspars). Polished, sub-rounded to rounded coarse (few gravels) grains present. Kankar proportion is minor.
233.75	246.25	12.5	Sand , Fine to medium brownish yellow sand with less kankars. Again sediment nature changes to the earlier position.
246.25	252.5	6.25	Sand , Fine to medium (mediums less) brownish yellow sand with less kankars.

Unique ID	
Village	Teghra
Taluka/Block	Teghra
District	Begusarai
Toposheet No.	
Lat	25.4946
Long	85.9344
RL (m amsl)	
Drilled Depth	146.25
Casing	
SWL (m bgl)	5.61
Discharge (lps)	58.61
Date/Year	June 2010

Depth (m b	0	Thickness (m)	Litholog
From	То		
0	7.5	7.5	Clay, deep brown to gray in colour
7.5	11.5	4	Fine to very fine gray, micaceous sand with silt
11.5	15	3.5	Fine gray, micaceous sand

15	18.25	3.25	Very fine gray, micaceous sand
18.25	30.75	12.5	Fine gray, micaceous sand
30.75	31.5	0.75	Clay, deep gray in colour
31.5	33.75	2.25	Medium to coarse, yellowish brown sand with kankars and iron flakes
33.75	46.25	12.5	Fine to medium, brownish yellow sand with kankars, iron flakes and biotite fines.
46.25	58.75	12.5	Medium, brownish yellow sand with few kankars and biotite fines.
58.75	71.25	12.5	Fine to medium, brownish yellow sand with kankars, iron flakes and biotite fines.
71.25	83.75	12.5	Medium, brownish yellow sand with few kankars and biotite fines.
83.75	90	6.25	Medium to coarse, yellowish brown sand with high percentage of kankars.
90	91	1	Clay
91	105.75	14.75	Medium to coarse, yellowish brown sand with high percentage of gravelly kankars, quartz and feldspars.
105.75	121.25	15.5	Medium to coarse, yellowish brown sand with low percentage of kankars, quartz and feldspars.
121.25	127.5	6.25	Medium to coarse, yellowish brown sand with low percentage of kankars, quartz and feldspars. Thin lenses of clay seem to intersperse the formation.
127.5	146.25	18.75	Medium to coarse, yellowish brown sand with low percentage of kankars, quartz and feldspars.

Lithology	Depth Range (m bgl)	Thickness (m)
Clay	0 -3.5	3.5
Fine to Medium Sand	3.5 - 13.2	9.7
Clay	13.2 - 25.9	12.7
Sandy Clay	25.9 -45	19.1
Coarse Sand	45 -113	68

Clay	113 -122	9
Coarse Sand	122 -147	25
Clay	147 -156	9
Coarse Sand	156 -167	11
Clay	167 -177	10
Coarse Sand	177 -225	48
Fine to Medium Sand	225 -262.27	37.27

A.N.College Campu,Patna

Lithology	Depth Range	Thickness
Lithology	(m bgl)	(m)
Sandy Clay	0-30	30
Coarse Sand	30 - 69	39
Clay	69 -88	19
Fine to Medium Sand	88 -94	6
Sandy Clay	94 -118	24
Fine to Medium Sand	118 -185	67
Coarse Sand	185 -230	45
Clay	230 - 235	5
Coarse Sand	235 -245	10
Clay	245 -300	55

Mithapur

Lithology	Depth Range	Thickness
Lithology	(m bgl)	(m)
Clay	0 -22	22
Coarse Sand	22 - 27	5
Clay	27 -77	50
Fine to Medium Sand	77 -104	27
Clay	104 -109	5
Fine to Medium Sand	109 -247	138

Kadamkuwa

Lithology	Depth Range	Thickness
	(m bgl)	(m)
Clay	0 -13.3	13.3
Coarse Sand	13.3 - 35.5	22.2
Clay	35.5 - 54.4	18.9
Coarse Sand	54.4 - 57.4	3

Technical Report Part-II

Clay	57.4 -63.7	6.3
Coarse Sand	63.7 -70	6.3
Clay	70 -73.5	3.5
Coarse Sand	73.5 -82.6	9.1
Gravel	82.6 -88.9	6.3
Clay	88.9 -95.2	6.3
Gravel	95.2 -101.8	6.6
Coarse Sand	101.8 -191	89.2
Medium Sand	191 -228.8	37.8
Clay	228.8 -251.7	22.9

Phulwarisarif

Lithology	Depth Range	Thickness
Litilology	(m bgl)	(m)
Sandy Clay	0 -43.82	43.82
Medium Sand	43.82 -118.56	74.74
Coarse Sand	118.56 -137.26	18.7
Medium Sand	137.26 -230.62	93.36

Bihata

Lithology	Depth Range (m bgl)	Thickness (m)
Fine to Medium Sand	0 -7	7
Sandy Clay	7 -31	24
Coarse Sand	31 -87	56
Clay	87 -106	19
Fine to Medium Sand	106 -129	23
Sandy Clay	129 -175	46
Fine to Medium Sand	175 -250	75

Dynamic Ground Water Resources of Blocks taken under Phase II

Sl. No.	Block	District	Recharge n Rainfall luring ionsoon season	ther irces ring nsoon ason	Recharge om Rainfall uring non- isoon season	rces during 1- monsoon season	Fround Water echarge	0	Net Annual Ground Water ailability	Existing ross Ground ter Draft for Irrigation	Existing Gross pund water Draft r Domestic and idustrial Water Supply	Existing ross Ground ter Draft For Uses (10+11)	quirement pply upto ear 2025	relopment (9-10- 13)	ound Water elopment (%)	Category: Safe / ni-critical/ Critical/ Over-exploited
1	Bachhawara	Begusarai	3767					524	4714		310					Safe
2	Bhagwanpur	Begusarai	2952	195	432	363	3942	394	3548	1859	265		453	1237	59.8	Safe
3	Birpur	Begusarai	1344	157	197	293	1991	199	1792	1506	150	1656				Semi-critical
4	Naokothi	Begusarai	1371	171	201	318	2061	206	1855	1646	162	1808	278	-68	97.5	Semi-critical
5	Teghra	Begusarai	3767	157	551	291	4766	477	4290	1502	426	1928	730	2058	45	Safe
6	Mohanpur		1949	120	333	89	2491	125	2366	521	171	793	272	1473	33.5	Safe
7	Mohiaddina	Samastipur	3385	336	533	248	4502	225	4277	1739	358	2096	637	1901	49.0	Safe
8		Samastipur		196	441	145	3887	194	3693	1015	277	1292	440	2238	35.0	Safe
9	Vidyapatina	Samastipur	2406	324	360	239	3328	333	2995	1674	236	1910	374	947	63.8	Safe
10	Biddupur	Vaishali	2530	1864	421	3178	7992	400	7593	2369	382	2751	562	4662	36.2	Safe
11	Hazipur	Vaishali	2657	421	363	323	3765	377	3389	2221	249	2471	367	800	72.9	Safe
12	Mahnar	Vaishali	4070	456	556	350	5432	543	4889	2414	512	2926	561	1914	59.8	Safe
13	Raghopur	Vaishali	6068	493	830	378	7769	777	6992	2609	346	2954	509	3875	42.2	Safe
14	Sahdai urg	Vaishali	2358	272	322	209	3161	316	2845	1439	183	1622	269	1136	57	Safe
15	Desri/Pre mraj	Desri/Pre mraj	1993	18 3	619	272	2588	259	2329	962	137	1099	202	1165	47.2	Safe
15	Dighwara	Saran	2025.8	219	274	247.3	2765.8	138	2628	1472	287	1759	363	793	66.9	Safe
16	Sonpur	Saran	3283.5	156	517.5	175.9	4132.9	207	3926	1050	513	1564	683	2192	39.8	Safe

Technical Report Part-II

17	Chapra	Saran	4387.6	534	569.8	507.7	5998.9	600	5399	2192	610	2802	782	2425	51.9	Safe
18	Revelganj	Saran	2931.3	189	380.7	213.5	3714.8	371	3343	1275	292	1566	355	1713	46.8	Safe
19	Athmalgol	Patna	986	242	130	82	1441	144	1296	835	123	958	172	290	73.9	Safe
20	Bakhtiapur	Patna	4822	483	637	165	6106	611	5496	1700	482	2182	479	3317	39.7	Safe
21	Barh	Patna	2685	374	354	127	3540	354	3186	1332	307	1639	479	1375	51.4	Safe
22	Mokama	Patna	4687	368	619	125	5799	580	5219	1319	606	1925	1042	2858	36.9	Safe
23	Pandarak	Patna	5020	661	663	225	6568	657	5912	2361	220	2581	306	3244	43.7	Safe

1. Salient Information

Name of the Block and Area (in Km²) Athmalgola

District/ State PatnaBihar/

Rainfall

The normal annual rainfall of Patna district is 988mm of which %86 occurs during the monsoon season. The normal rainfall during monsoon season is 855mm and during non-monsoon season is 133mm.

Agriculture and Irrigation

The Block falls in the Agro-climatic Zone III B. The cropping sequence followed in this zone is Rice- Wheat, Rice-Gram, Rice- lentil and Rice- Rai. The soils in this zone are sandy loam, clay loam, laom and clay with pH in the range of 6.8-8. The variation of rainfall in this zone is from 990 mm to 1240 mm and the temperature varies from 37.1 to 7.8° C.

Ground water resource availability and extraction

The dynamic ground water resource of Athmalgola Block has been assessed as 12.96 MCM. The gross ground water draft for all uses stands at 9.58 MCM. The stage of Development is 73.9%(Annexure I).

Water level behavior

The depth to water level varies from 8m to mbgl 10 during the pre-monsoon season and from 6 to 10 m during the post-monsoon season.

2. Aquifer Disposition

The area is bestowed with two- aquifer system. The section depicting the aquifer disposition is shown below.

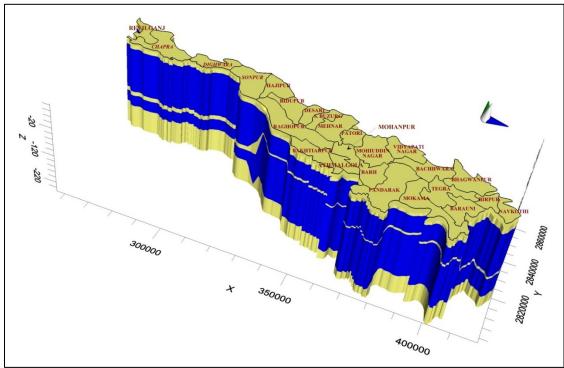
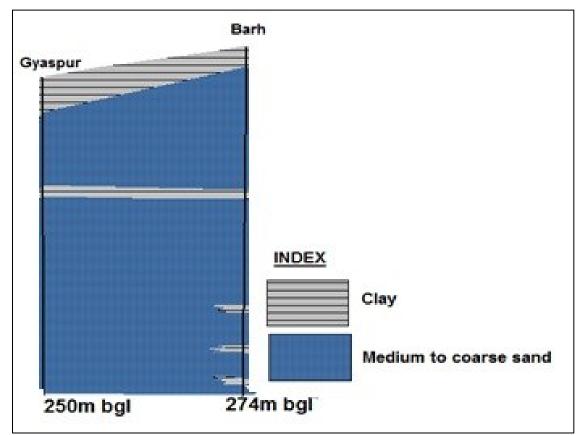
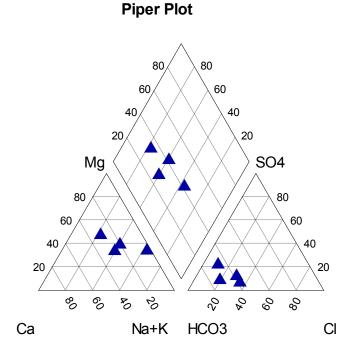
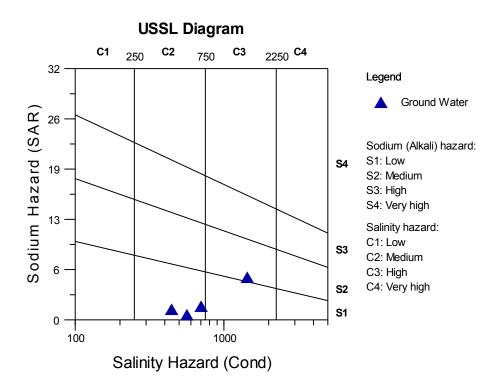



Fig 1: 3D View of aquifer disposition



of aquifer disposition Fig 2: 2D View


The overall stage of groundwater development in the Block is 73.9%. Thus sufficient scope exists for groundwater development in the Block. Arsenic contamination of groundwater has been reported from the 1st aquifer in the younger alluvial belt upto the depth of 60m. Ground water exploration has revealed that the 2nd aquifer which is encountered below the clay layer separating the 1st and the 2nd aquifer is safe from arsenic contamination. The 2nd aquifer is thus recommended for community drinking water supply. Even in the 1st aquifer, the concentration of arsenic below the depth of 60 m has been found within the permissible limit, however, these are vulnerable to contamination with further groundwater development as they are part of the same contaminated aquifer. It is therefore recommended to develop the groundwater from the lower parts of the 1st aquifer only through hand-pumps. Energized extraction should be discouraged as this would accelerate the vertical mixing with the arsenic contaminated layers. The 2nd Aquifer is recommended only for extraction for drinking water supply.

Chemical quality of ground water and contamination

4. Ground water resource enhancement

As the stage of groundwater development is within the safe limits and there is no longterm water level decline in the area, the need for artificial recharge is not felt.

5. Demand side interventions

In view of the issue of arsenic contamination, it is recommended to use the 2^{nd} Aquifer solely for meeting the drinking water supply requirement. Necessary regulations to enforce this recommendation in the arsenic affected Blocks may be made so as to keep the 2^{nd} aqufer safe from arsenic contamination.

Annexure I

Annexure II

Dynamic Ground Water Resource Estimation

		Recharge	Recharge	Recharge	Recharge	Total	Provision	Net Annual	Existing	Existing	Existing	Allocation for	Net Ground	Stage of	Categ
		from	from	from	from other	Annual	for Natural	Ground	Gross	Gross	Gross Ground	Domestic and	Water	Ground	Safe/S
		Rainfall	other	Rainfall	sources	Ground	Discharge	Water	Ground	Ground	Water Draft	Industrial	Availability for	Water	critica
		during	sources	during	during non-	Water		Availability	Water	water Draft	For all Uses	Requirement	future irrigation	Developm	al/Ove
		monsoon	during	non-	monsoon	Recharge			Draft for	for Domestic	(10+11)	supply upto	development	ent (%)	exploi
District	Block	season	monsoon	monsoon	season				Irrigation	and		year 2025	(9-10-13)		
District	DIOCK		season	season						Industrial					
										Water					
										Supply					
Patna	Athmalgola	986	242	130	82	1441	144	1296	835	123	958	172	290	73.9	Safe

Chemical Analysis of Ground Water Sample

0	i i illui joib oi oi		p									
Sample	,											
No.	Location	Long	Lat	Block	District	Source	pН	EC	tds	CO3	HCO3-	Cl-
	Ramnagar						7.82	578	375.7	0	239.85	24.81
19	Diara	85°34′20.4′′	25°28′16.3′′	Athmalgola	Patna	Handpump	1.02	570	515.1	v	207.00	24.01
	,	1	1	Athmalgola	1	1	8.20	721	468.65	0	270.60	99.26
20	Athmalgola	85°36′24.9′′	25°27′35.2′′	(As)	Patna	Handpump	8.20	/21	408.05	0	270.00	99.20
21	Surajpura	85°37′33′′	25°26′35′′	Athmalgola	Patna	Dugwell	8.40	1472	956.8	9	528.90	166.61
22	Achuara	85°39′28.4′′	25°27′33.9′′	Athmalgola	Patna	Handpump	8.46	456	296.4	9	196.80	31.90

1. Salient Information

Name of the Block and Area (in Km²) Bakhtiyarpur

District/ State PatnaBihar/

Rainfall

The normal annual rainfall of Patna district is 988mm of which %86occurs during the monsoon season. The normal rainfall during monsoon season is 855mm and during non-monsoon season is 133mm.

Agriculture and Irrigation

The Block falls in the Agro-climatic Zone III B. The cropping sequence followed in this zone is Rice- Wheat, Rice-Gram, Rice- lentil and Rice- Rai. The soils in this zone are sandy loam, clay loam, laom and clay with pH in the range of 6.8-8. The variation of rainfall in this zone is from 990 mm to 1240 mm and the temperature varies from 37.1 to 7.8° C.

Ground water resource availability and extraction

The dynamic ground water resource of Bakhtiyarpur Block has been assessed as 54.96 MCM. The gross ground water draft for all uses stands at 21.82 MCM. The stage of Development is 39.7% (Annexure I).

Water level behavior

The depth to water level varies from 6 - 8 m during the pre-monsoon season and from 8 - 10 m during the post-monsoon season.

2. Aquifer Disposition

The area is bestowed with two- aquifer system. The section depicting the aquifer disposition is shown below(Fig 1 & 2).

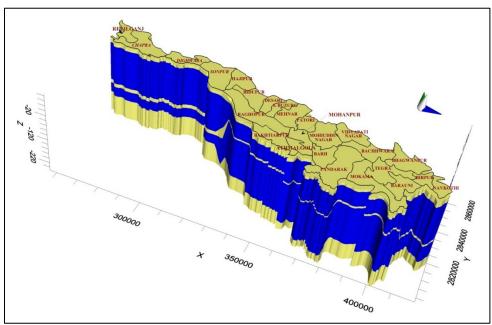
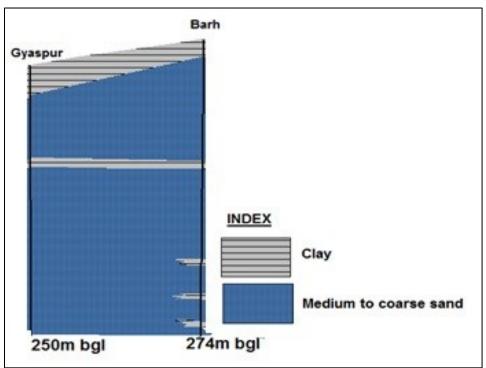
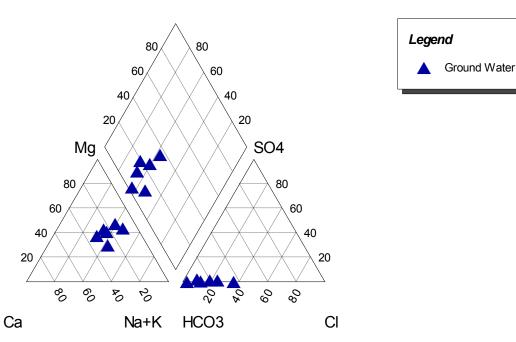
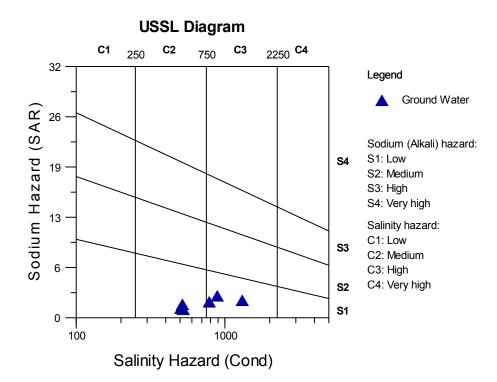


Fig 1: 3D View of aquifer disposition




Fig 2: 2D View of aquifer disposition

The overall stage of groundwater development in the Block is 39.7%. Thus sufficient scope exists for groundwater development in the Block. Arsenic contamination of groundwater has been reported from the 1st aquifer in the younger alluvial belt upto the depth of 60m. Ground water exploration has revealed that the 2nd aquifer which is


encountered below the clay layer separating the 1st and the 2nd aquifer is safe from arsenic contamination. The 2^{nd} aquifer is thus recommended for community drinking water supply. Even in the 1st aguifer, the concentration of arsenic below the depth of 60 m has been found within the permissible limit, however, these are vulnerable to contamination with further groundwater development as they are part of the same contaminated aquifer. It is therefore recommended to develop the groundwater from the lower parts of the 1st aquifer only through hand-pumps. Energised extraction should be discouraged as this would accelerate the vertical mixing with the arsenic contaminated layers. The 2nd Aquifer is recommended only for extraction for drinking water supply.

Chemical quality of ground water and contamination

Piper Plot


4. Ground water resource enhancement

As the stage of groundwater development is within the safe limits and there is no long-term water level decline in the area, the need for artificial recharge is not felt.

5. Demand side interventions

In view of the issue of arsenic contamination, it is recommended to use the 2^{nd} Aquifer solely for meeting the drinking water supply requirement. Necessary regulations to enforce this recommendation in the arsenic affected Blocks may be made so as to keep the 2^{nd} aquifer safe from arsenic contamination.

Annexure I

Dynamic Ground Water Resource Estimation

	Recharge	Recharge	Recharge	Pacharga										
	C		Be	Recharge	Total	Provision	Net Annual	Existing	Existing	Existing	Allocation for	Net Ground	Stage of	Cate
	from	from	from	from other	Annual	for Natural	Ground	Gross	Gross	Gross Ground	Domestic and	Water	Ground	Safe/
	Rainfall	other	Rainfall	sources	Ground	Discharge	Water	Ground	Ground	Water Draft	Industrial	Availability for	Water	critic
	during	sources	during	during non-	Water		Availability	Water	water Draft	For all Uses	Requirement	future irrigation	Developm	al/Ov
	monsoon	during	non-	monsoon	Recharge			Draft for	for Domestic	(10+11)	supply upto	development	ent (%)	explo
ock	season	monsoon	monsoon	season				Irrigation	and		year 2025	(9-10-13)		
OCK		season	season						Industrial					
									Water					
									Supply					
akhtiyarpur	4822	483	637	165	6106	611	5496	1700	482	2182	479	3317	39.7	Safe
- 1														
	k		during sources monsoon during season monsoon season	during sources during monsoon during non- season monsoon monsoon season season season	k during sources during during non- monsoon during non- monsoon season monsoon season season during non- monsoon season	k during sources during during non- monsoon during non- monsoon season season season during hor- beland the season	k during sources during during non- monsoon during non- season season season during hon- hon- season season season during hon- season season beat during hon- season beat duri	k during sources during non- monsoon season season season season during non- monsoon season during non- monsoon season seas	k during sources during non- monsoon season season season season during non- monsoon season during non- monsoon season season season season during non- monsoon during non- monsoon during non- monsoon season during non- monsoon d	during monsoon seasonsources during monsoon seasonduring non- monsoon seasonWater monsoon seasonAvailabilityWater Draft for Irrigationwater Draft for Domestic and Industrial Water Supply	during monsoon seasonsources during monsoon seasonduring non- monsoon seasonWater monsoon seasonWater monsoon seasonWater RechargeAvailabilityWater Draft for Irrigationwater Draft for Domestic (10+11)	during monsoon seasonsources during monsoon seasonduring non- monsoon seasonWater monsoon seasonWater Draft for Irrigationwater Draft for Domestic (10+11)For all Uses supply upto year 2025	during monsoon seasonsources during monsoon seasonduring non- monsoon seasonduring non- monsoon seasonWater RechargeWater Draft for Irrigationwater Draft for Domestic and Industrial Water SupplyFor all Uses supply upto year 2025Requirement development (9-10-13)	during monsoon seasonsources during monsoon seasonduring non- monsoon seasonduring non- monsoon seasonWater RechargeWater Draft for IrrigationWater Draft for IrrigationFor all Uses (10+11)Requirement supply upto year 2025future irrigation development (9-10-13)Developm ent (%)

Annexure II

Chemical Analysis of Ground Water Sample

Sample												
No.	Location	Long	Lat	Block	District	Source	pН	EC	tds	СО3	HCO3-	Cl-
68	Rukunpura	85.13737	25.62365	Bakhtiyarpur	Patna	Handpump	8.15	538	344.32	0	244	35.46
69	Bidhipur(Handpump)	85.46111	25.49041	Bakhtiyarpur	Patna	Handpump	8.35	517	330.88	24	231.8	21.276
70	Bidhipur(DG)	85.46111	25.49041	Bakhtiyarpur	Patna	Dugwell	8	1341	858.24	0	677.1	17.3754
71	Alipur	85.44178	25.47373	Bakhtiyarpur	Patna	Handpump	8.31	909	581.76	0	524.6	35.46
72	Hatia	85.49639	25.49042	Bakhtiyarpur	Patna	Handpump	8.22	804	514.56	0	207.4	70.92
73	Gyaspur	85.44611	25.50707	Bakhtiyarpur	Patna	Handpump	8.32	531	339.84	0	250.1	49.644

1. Salient Information

Name of the Block and Area (in Km²) Barh

District/ State PatnaBihar/

Rainfall

The normal annual rainfall of Patna district is 988mm of which %86occurs during the monsoon season. The normal rainfall during monsoon season is 855mm and during non-monsoon season is 133mm.

Agriculture and Irrigation

The Block falls in the Agro-climatic Zone III B. The cropping sequence followed in this zone is Rice- Wheat, Rice-Gram, Rice- lentil and Rice- Rai. The soils in this zone are sandy loam, clay loam, laom and clay with pH in the range of 6.8-8. The variation of rainfall in this zone is from 990 mm to 1240 mm and the temperature varies from 37.1 to 7.8° C.

Ground water resource availability and extraction

The dynamic ground water resource of Barh Block has been assessed as 31.86 MCM. The gross ground water draft for all uses stands at 16.39 MCM. The stage of Development is 51.4%.(Annexure I)

Water level behavior

The depth to water level varies from 2m to 8 m during the pre-monsoon season and from 4 to 10 m during the post-monsoon season.

2. Aquifer Disposition

The area is bestowed with two- aquifer system. The section depicting the aquifer disposition is shown below(Fig 1 & 2) .

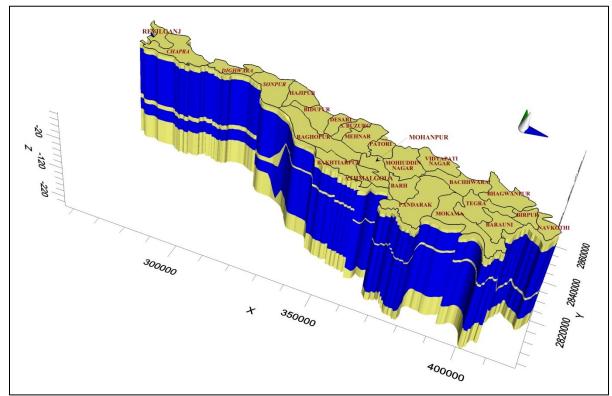


Fig 1: 3D View of aquifer disposition

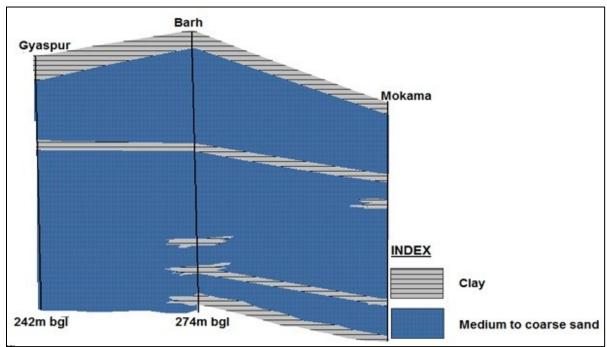
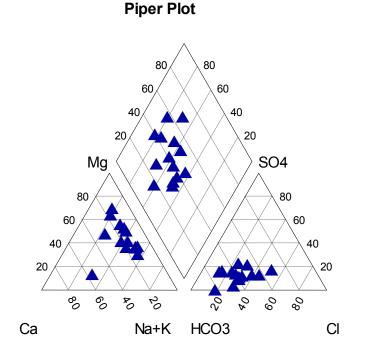
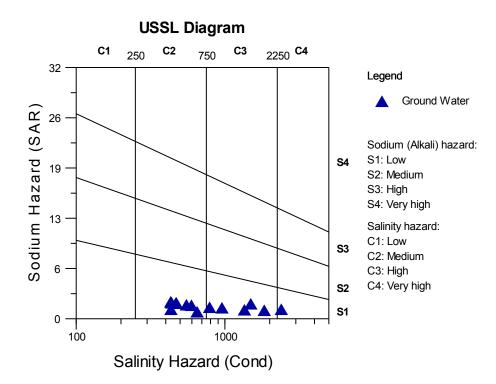


Fig 2: 2D View of aquifer disposition



The overall stage of groundwater development in the Block is 51.4%. Thus sufficient scope exists for groundwater development in the Block.

Arsenic contamination of groundwater has been reported from the 1st aquifer in the younger alluvial belt upto the depth of 60m. Ground water exploration has revealed that the 2nd aquifer which is encountered below the clay layer separating the 1st and the 2nd aquifer is safe from arsenic contamination. The 2nd aquifer is thus recommended for community drinking water supply. Even in the 1st aquifer, the concentration of arsenic below the depth of 60 m has been found within the permissible limit, however, these are vulnerable to contamination with further groundwater development as they are part of the same contaminated aquifer. It is therefore recommended to develop the groundwater from the lower parts of the 1st aquifer only through hand-pumps. Energised extraction should be discouraged as this would accelerate the vertical mixing with the arsenic contaminated layers.


The 2nd Aquifer is recommended only for extraction for drinking water supply.

Chemical quality of ground water and contamination

Legend ▲ Ground Water

4. Ground water resource enhancement

As the stage of groundwater development is within the safe limits and there is no long-term water level decline in the area, the need for artificial recharge is not felt.

5. Demand side interventions

In view of the issue of arsenic contamination, it is recommended to use the 2^{nd} Aquifer solely for meeting the drinking water supply requirement. Necessary regulations to enforce this recommendation in the arsenic affected Blocks may be made so as to keep the 2^{nd} aquifer safe from arsenic contamination.

Annexure I

Dynamic Ground Water Resource Estimation

Annexure II

																			1	ппсл	uic II	
District	Block		Recharge from Rainfall during monsoon season	Recharge from other sources during monsoon season	Recharge from Rainfall during non- monsoon season	Recha from c source during monsc season	other es g non- oon	Total Annual Ground Water Recharge	Provision for Natur Discharg	ral Gro ge Wa	t Annual ound ter ailability	Existin Gross Ground Water Draft fo Irrigati	d C for f ion a I	Existing Gross Ground water Dr for Domo and Industria Water Supply	raft lestic	Existin Gross Water For all (10+11	Ground I Draft I Uses I I) s	Allocation for Domestic and Industrial Requirement supply upto year 2025	Net Groun Water Availabili future irri developm (9-10-13)	ity for gation	Stage of Ground Water Developm ent (%)	Categ Safe/s critica al/Ov explo
Patna	Barh		2685	374	354	127		3540	354	318	36	1332		307	T	1639	4	479	1375		51.4	Safe
		Chemic	cal Analys	is of Gro	und Wat	er San	mple		L	<u> </u>		<u>I</u>			L		L		<u> </u>		<u> </u>	
		Sample No.			Long		Lat	Block	<u>k</u> D	District	Source	e	pН		EC		tds	СО3	НСО3-	Cl	I	F
		90	Rajpura	3	85.6	6426	25.458	9 Barh	Ра	atna	Dugw	ell	7.2	.26	245	50	1568	0	817		220	0.16
		91	Acchua	ıra	85.6	551	25.459	9 Barh	Р	atna	Handp	oump	8.:	.55	443	3	283.52	3	116		32	0.25
		92	Dahaur	·	85.6	664	25.461	7 Barh	Р	atna	Handp	oump	7.	.71	666	6	426.24	0	177		21	0.3
		93	Alakna	th (Chondi	85.6	i 985	25.470			atna	Handp	oump		.57	479	9	306.56	9	195		53	0.04
		94	Bajidpu		85.7		25.465			atna	Dugw			.07	153		980.48		384		188	0.73
		95	Gulab-t	bagh	85.7	'167	25.478			atna	Handp	oump		.39	565		361.6	6	201		64	0.3
		96	Shahri		85.7	284	25.474	6 Barh	Р	atna	Handp	oump	8.:	.51	808	8	517.12	9	293		92	0
		97	Amarpı (Ranabi		85.7	'360	25.461			atna	Dugw	ell		.62	138		887.04	0	378		131	0.28
		98	Agwan	pur	85.7	'317	25.4514			atna	Dugw	ell	7.:	.57	188		1207.68		458		287	1.45
		99	Agwan	pur	85.7	'293	25.4524	4 Barh	Pa	atna	Handp	oump	8.:	.51	449	9	287.36	12	171		39	0.05
		100	Jamuni	chak	85.7	'172	25.459	9 Barh	Pa	atna	Handp	oump	8.4	.46	978	8	625.92	9	153		152	0.65
		101		nri Chowk	85.6		25.463			atna	Handp			.64	610		390.4	12	159		64	0.39
		102		ri Malahi	85.6		25.461			atna	Handp			.48	444		284.16		207		28	0.26
		103	Hasan (Chak	85.6	6488	25.4593	3 Barh	Р	atna	Handp	oump	8.:	.59	482	2	308.48	12	183		25	0.51

1. Salient Information

Name of the Block and Area (in Km²) Pandarak

District/ State PatnaBihar/

Rainfall

The normal annual rainfall of Patna district is 988mm of which %86occurs during the monsoon season. The normal rainfall during monsoon season is 855mm and during non-monsoon season is 133mm.

Agriculture and Irrigation

The Block falls in the Agro-climatic Zone III B. The cropping sequence followed in this zone is Rice- Wheat, Rice-Gram, Rice- lentil and Rice- Rai. The soils in this zone are sandy loam, clay loam, laom and clay with pH in the range of 6.8-8. The variation of rainfall in this zone is from 990 mm to 1240 mm and the temperature varies from 37.1 to 7.8° C.

Ground water resource availability and extraction

The dynamic ground water resource of Pandarak Block has been assessed as 59.12 MCM. The gross ground water draft for all uses stands at 25.81 MCM. The stage of Development is 43.7%.

Water level behavior

The depth to water level varies from 4m to 6 m during the pre-monsoon season and from 4 to 10 m during the post-monsoon season.

2. Aquifer Disposition

The area is bestowed with two- aquifer system. The section depicting the aquifer disposition is shown below(Fig 1 & 2)

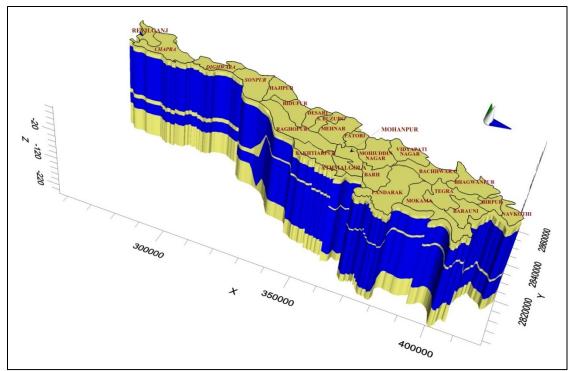
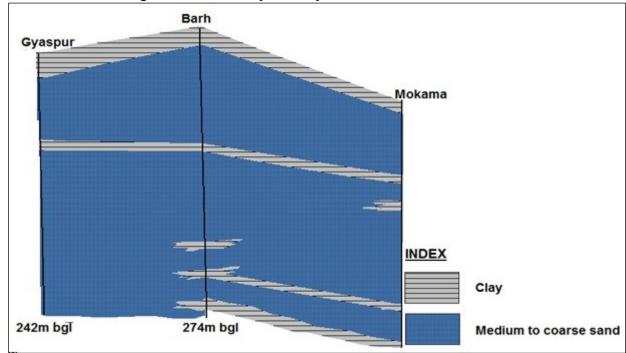
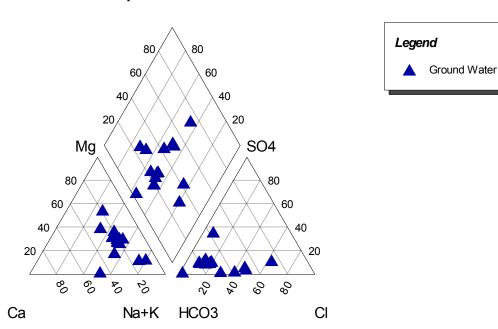
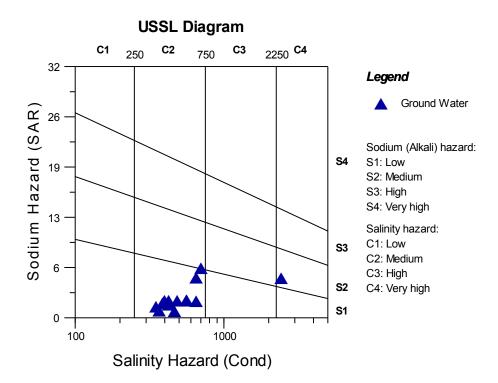


Fig 1: 3D View of aquifer disposition




Fig 2: 2D View of aquifer disposition

The overall stage of groundwater development in the Block is 43.7%. Thus sufficient scope exists for groundwater development in the Block. Arsenic contamination of groundwater has been reported from the 1st aquifer in the younger alluvial belt upto the


depth of 60m. Ground water exploration has revealed that the 2^{nd} aquifer which is encountered below the clay layer separating the 1^{st} and the 2^{nd} aquifer is safe from arsenic contamination. The 2^{nd} aquifer is thus recommended for community drinking water supply. Even in the 1^{st} aquifer, the concentration of arsenic below the depth of 60 m has been found within the permissible limit, however, these are vulnerable to contamination with further groundwater development as they are part of the same contaminated aquifer. It is therefore recommended to develop the groundwater from the lower parts of the 1^{st} aquifer only through hand-pumps. Energised extraction should be discouraged as this would accelerate the vertical mixing with the arsenic contaminated layers. The 2^{nd} Aquifer is recommended only for extraction for drinking water supply.

Chemical quality of ground water and contamination

Piper Plot

4. Ground water resource enhancement

As the stage of groundwater development is within the safe limits and there is no longterm water level decline in the area, the need for artificial recharge is not felt.

5. Demand side interventions

In view of the issue of arsenic contamination, it is recommended to use the 2^{nd} Aquifer solely for meeting the drinking water supply requirement. Necessary regulations to enforce this recommendation in the arsenic affected Blocks may be made so as to keep the 2^{nd} aqufer safe from arsenic contamination.

Annexure I

Dynamic Ground Water Resource Estimation

District	Block	Recharge from Rainfall during monsoon season	Recharg e from other sources during monsoon season	Recharg e from Rainfall during non- monsoon season	Recharge from other sources during non- monsoon season	Total Annual Ground Water Recharg e	Provision for Natural Discharge	Net Annual Ground Water Availabilit y	Existing Gross Ground Water Draft for Irrigatio n	Existing Gross Ground water Draft for Domestic and Industrial Water Supply	Existing Gross Ground Water Draft For all Uses (10+11)	Allocation for Domestic and Industrial Requirement supply upto year 2025	Net Ground Water Availability for future irrigation development (9-10-13)	Stage of Ground Water Develop ment (%)	Categor Safe/Set critical/ cal/Ove exploite
Patna	Pandarak	5020	661	663	225	6568	657	5912	2361	220	2581	306	3244	43.7	Safe
F	Chemical A	Analysis of C	Ground Wa	ter Sampl	e								A	nnexure II	

Sample No.	Location	Long	Lat	Block	District	Source	pН	EC	tds	СО3	НСО3-	Cl-
23	Bariarpur	85°45′38.2′′	25°30′3.6′′	Pandarak	Patna	Handpump	8.22	718	466.7	0	319.80	85
24	Raili	85°46′13′′	25°29′33.8′′	Pandarak	Patna	Handpump	7.36	666	432.9	0	252.15	10
25	Meghagachi	85°47′42′′	25°29′5.4′′	Pandarak	Patna	Handpump	7.5	574	373.1	0	178.35	10
26	Bampura	85°47′24.5′′	25°28′2.7′′	Pandarak	Patna	Dugwell	7.94	665	432.25	0	184.50	16
27	G.SeikHandpumpura	85°47′2.6′′	25°27′6.1΄′	Pandarak	Patna	Handpump	8.21	395	256.75	0	196.80	24
28	Manjulabigha	85°46′30.8′′	25°25′57.4′′	Pandarak	Patna	Handpump	7.66	441	286.65	0	209.10	31
29	Kondi	85°46′5′′	25°25′1′′	Pandarak	Patna	Handpump	8.11	408	265.2	0	209.10	17
30	Chak Jalal	85°44′39′′	25°23′36′′	Pandarak	Patna	Handpump	8.02	434	282.1	0	233.70	24
31	Ekdanga	85°42′27′′	25°23′22.7′′	Pandarak	Patna	Handpump	7.44	496	322.4	0	202.95	31
32	Saksohra	85°42′2.1′′	25°21′49.9′′	Pandarak	Patna	Handpump	8.26	375	243.75	0	172.20	28
33	Mubarakpur	85°43′59′′	25°20′24′′	Pandarak	Patna	Handpump	8.29	435	282.75	0	227.55	17
34	Barwane	85°44′55.6′′	25°20′0.1′′	Pandarak	Patna	Dugwell	788	2482	1613.3	0	344.40	524
35	Jagmal Chak	85°45′52.4′′	25°19′34.5′′	Pandarak	Patna	Handpump	8.18	476	309.4	0	221.40	24
36	Pitunjia (As)	85°46′34.8′′	25°20′12.5′′	Pandarak	Patna	Handpump	7.56	357	232.05	0	221.40	3.
37	Sitarambaghi Kumhartola	85°48′47.7′′	25°20′12.5′′	Pandarak	Patna	Handpump	7.27	570	370.5	0	172.20	99

1. Salient Information

Name of the Block and Area (in Km²) Mokamah

District/ State PatnaBihar/

Rainfall

The normal annual rainfall of Patna district is 988mm of which %86occurs during the monsoon season. The normal rainfall during monsoon season is 855mm and during non-monsoon season is 133mm.

Agriculture and Irrigation

The Block falls in the Agro-climatic Zone III B. The cropping sequence followed in this zone is Rice- Wheat, Rice-Gram, Rice- lentil and Rice- Rai. The soils in this zone are sandy loam, clay loam, laom and clay with pH in the range of 6.8-8. The variation of rainfall in this zone is from 990 mm to 1240 mm and the temperature varies from 37.1 to 7.8° C.

Ground water resource availability and extraction

The dynamic ground water resource of Mokamah Block has been assessed as 52.19MCM. The gross ground water draft for all uses stands at 19.25 MCM. The stage of Development is 36.9%.

Water level behavior

The depth to water level varies from 4m to 6 m during the pre-monsoon season and from 2 to 6 m during the post-monsoon season.

2. Aquifer Disposition

The area is bestowed with two- aquifer system. The section depicting the aquifer disposition is shown below(Fig 1 & 2)

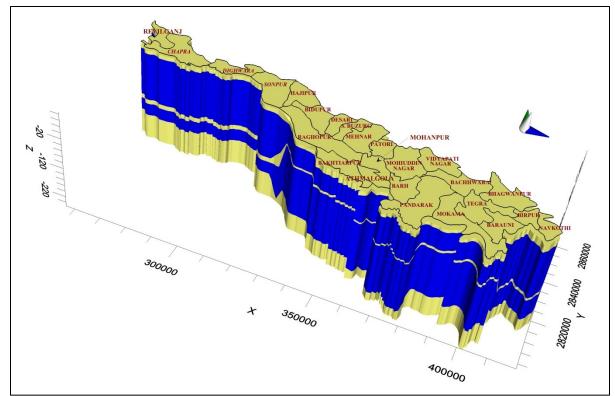


Fig 1:3D View of aquifer disposition

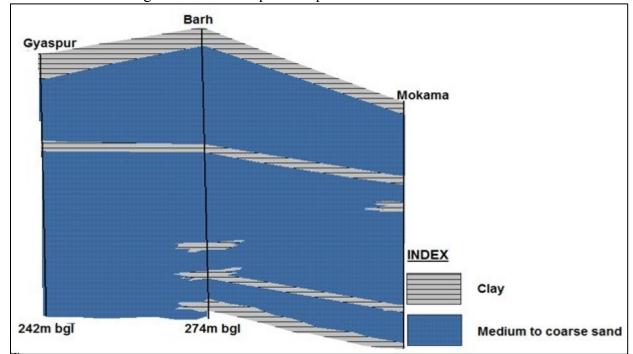
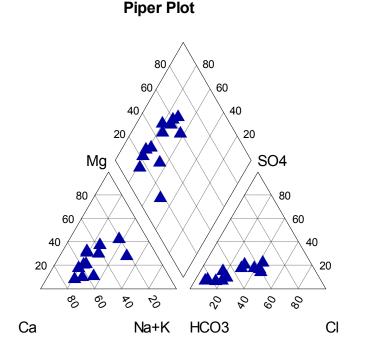
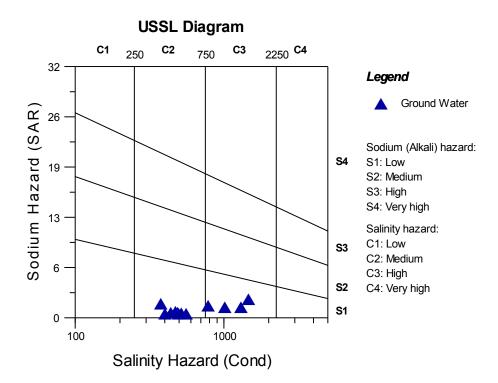


Fig 2: 2D View of aquifer disposition



The overall stage of groundwater development in the Block is 36.9%. Thus sufficient scope exists for groundwater development in the Block.

Arsenic contamination of groundwater has been reported from the 1st aquifer in the younger alluvial belt upto the depth of 60m. Ground water exploration has revealed that the 2nd aquifer which is encountered below the clay layer separating the 1st and the 2nd aquifer is safe from arsenic contamination. The 2nd aquifer is thus recommended for community drinking water supply. Even in the 1st aquifer, the concentration of arsenic below the depth of 60 m has been found within the permissible limit, however, these are vulnerable to contamination with further groundwater development as they are part of the same contaminated aquifer. It is therefore recommended to develop the groundwater from the lower parts of the 1st aquifer only through hand-pumps. Energised extraction should be discouraged as this would accelerate the vertical mixing with the arsenic contaminated layers.


The 2nd Aquifer is recommended only for extraction for drinking water supply.

Chemical quality of ground water and contamination

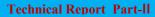
4. Ground water resource enhancement

As the stage of groundwater development is within the safe limits and there is no longterm water level decline in the area, the need for artificial recharge is not felt.

5. Demand side interventions

In view of the issue of arsenic contamination, it is recommended to use the 2^{nd} Aquifer solely for meeting the drinking water supply requirement. Necessary regulations to enforce this recommendation in the arsenic affected Blocks may be made so as to keep the 2^{nd} aqufer safe from arsenic contamination.

Annexure I


Dynamic Ground Water Resource Estimation

		Recharge	Recharge	Recharge	Recharge	Total	Provision	Net Annual	Existing	Existing	Existing	Allocation for	Net Ground	Stage of	Categ
		from	from	from	from other	Annual	for Natural	Ground	Gross	Gross	Gross Ground	Domestic and	Water	Ground	Safe/S
		Rainfall	other	Rainfall	sources	Ground	Discharge	Water	Ground	Ground	Water Draft	Industrial	Availability for	Water	critica
		during	sources	during	during non-	Water		Availability	Water	water Draft	For all Uses	Requirement	future irrigation	Developm	al/Ov
District	Block	monsoon	during	non-	monsoon	Recharge			Draft for	for Domestic	(10+11)	supply upto	development	ent (%)	explo
		season	monsoon	monsoon	season				Irrigation	and		year 2025	(9-10-13)		
			season	season						Industrial					
										Water					
										Supply					
Patna	Mokama	4687	368	619	125	5799	580	5219	1319	606	1925	1042	2858	36.9	Safe
·						0			1						

Annexure II

Chemical Analysis of Ground Water Sample

Sample			· [· · · · · · · · · · · · · · · · · ·	,	1							
No.	Location	Long	Lat	Block	District	Source	pН	EC	tds	CO3	HCO3-	Cl-
38	Hathidah(AS)	85°59′7.3′′	25°22′12.6′′	Mokama	Patna	Handpump	7.41	385	250.25	0	209.10	14.18
	Goshain		,	1	1							
39	Gaon(As)	85°54′58′′	25°22′53.3′′	Mokama	Patna	Dugwell	8.31	1037	663.68	9	201	152
40	Badpur	85°00′30.7′′	25°19′56.9′′	Mokama	Patna	Dugwell	8.38	1332	852.48	15	256	170
41	Dariarpur tola	85°58′25.8′′	25°22′52.2′′	Mokama	Patna	Handpump	8.61	484	309.76	18	79	43
42	Aunta	85°57′35.2′′	25°23′7.4′′	Mokama	Patna	Handpump	8.13	802	513.28	0	305	46
43	Parshuramsthan	85°54′54.4′′	25°23′57.2′′	Mokama	Patna	Handpump	8.42	508	325.12	6	226	28
44	Seonar	85°53′27′′	25°24′33.3′′	Mokama	Patna	Handpump	8.69	411	263.04	6	159	32
45	Barahapur Bintoli	85°52′40.7′′	25°25′11.8′′	Mokama	Patna	Handpump	8.75	450	288	12	128	43
	Morh	1	· · · · · · · · · · · · · · · · · · ·	· [· · · · · · · · · · · · · · · · · ·	1							
46	English(As)	85°52′6.6′′	25°25′36.4′′	Mokama	Patna	Handpump	8.57	529	338.56	3	134	50
47	Sultanpur	85°51′24.5′′	25°26′56.9′′	Mokama	Patna	Dugwell	8.29	1496	957.44	0	329	227
48	Kanhaipur	85°50′48.6′′	25°27′46′′	Mokama	Patna	Handpump	8.55	500	320	3	250	14
49	Mekra	85°50′9.3′′	25°28′29.2′′	Mokama	Patna	Handpump	8.39	570	364.8	15	207	35

1. Salient Information

Name of the Block and Area (in Km²) Bhagawanpur

District/ State BegusaraiBihar/

Rainfall

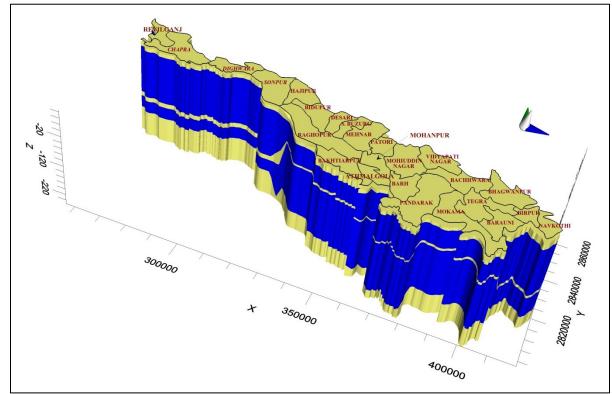
The normal annual rainfall of Begusarai district is 1102mm of which %80occurs during the monsoon season. The normal rainfall during monsoon season is 889mm and during non-monsoon season is 213mm.

Agriculture and Irrigation

The Block falls in the Agro-climatic Zone I. The cropping sequence followed in Agro-climatic Zone I is Rice- Wheat, Rice- Rai, Rice-Sweet Potato, Rice-Maize, Maize-Wheat, Maize-Sweet Potato, Maize-Rai, Rice-lentil and Rice-linseed. The soils in this zone are sandy loam and loam with pH in the range of 6.5-8.4 The variation of rainfall in this zone is from 1040-1450 mm and the temperature varies from 36.6 to 7.7°C.

Ground water resource availability and extraction

The dynamic ground water resource of Bhagawanpur Block has been assessed as 35.48 MCM. The gross ground water draft for all uses stands at 21.23 MCM. The stage of Development is 59.8%(I -Annexure).


Water level behavior

The depth to water level varies from 4m to 6 m during the pre-monsoon season and from 2 to 6 m during the post-monsoon season.

2. Aquifer Disposition

The area is bestowed with two- aquifer system. The section depicting the aquifer disposition is shown below(Fig 1 & 2) .

aquifer disposition Fig 1:3D View of

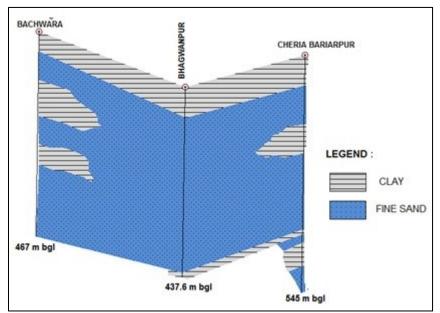
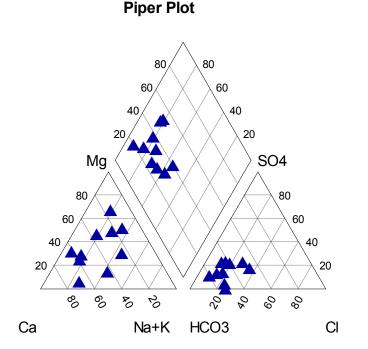
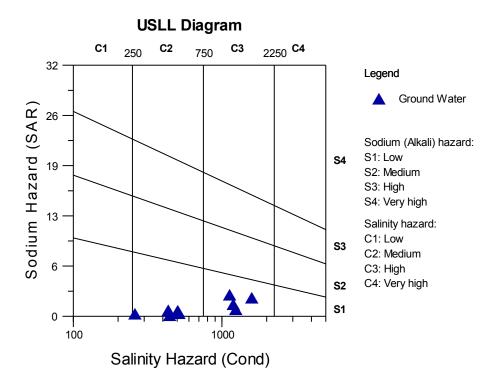


Fig 2: 2D View of aquifer disposition



The overall stage of groundwater development in the Block is 59.8%. Thus sufficient scope exists for groundwater development in the Block.


Arsenic contamination of groundwater has been reported from the 1st aquifer in the younger alluvial belt upto the depth of 60m. Ground water exploration has revealed that the 2nd aquifer which is encountered below the clay layer separating the 1st and the 2nd aquifer is safe from arsenic contamination. The 2nd aquifer is thus recommended for community drinking water supply. Even in the 1st aquifer, the concentration of arsenic below the depth of 60 m has been found within the permissible limit, however, these are vulnerable to contamination with further groundwater development as they are part of the same contaminated aquifer. It is therefore recommended to develop the groundwater from the lower parts of the 1st aquifer only through hand-pumps. Energised extraction should be discouraged as this would accelerate the vertical mixing with the arsenic contaminated layers.

The 2nd Aquifer is recommended only for extraction for drinking water supply.

Chemical quality of ground water and contamination

4. Ground water resource enhancement

As the stage of groundwater development is within the safe limits and there is no long-term water level decline in the area, the need for artificial recharge is not felt.

5. Demand side interventions

In view of the issue of arsenic contamination, it is recommended to use the 2^{nd} Aquifer solely for meeting the drinking water supply requirement. Necessary regulations to enforce this recommendation in the arsenic affected Blocks may be made so as to keep the 2^{nd} aqufer safe from arsenic contamination.

Annexure I

Dynamic Ground Water Resource Estimation

Annexure II

District	Block	Rechar ge from Rainfal l during monso on season	Recharge from other sources during monsoon season	Recharge from Rainfall during non- monsoon season	Recharge from other sources during non- monsoon season	Total Annual Ground Water Recharge	Provision for Natural Discharge	Net Annua Ground Water Availabilit	Gross Ground	Gross Ground water Draft r for	Existing Gross Ground Water Draft For all Uses (10+11)	Allocation 1 Domestic au Industrial Requiremer supply upto year 2025	and Water Availab ent future in to develop	bility for irrigation pment	Stage of Ground Water Development (%)	Categ Safe/S critica nt ical/O exploi
Begusarai	Bhagwanpur	2952	195	432	363	3942	394	3548	1859	265	2123	453	1237		59.8	safe
L	Chemica ¹	nical Analysis of Ground Water Sample														
	Sample No.	Location Long Lat Block I		District	Source	pН	EC	tds	СО3	HCO	03- Cl					
	50	Dahia			°00′50.6′′	25°32′18.1′	^{''} Bhagv	wanpur H	Begusarai	Handpump	8.97	266	170.24			
	51	Bhardi	iha	85°	°59′16.3′′	25°32′57.2′			Begusarai		8.6	526	336.64	24	183	3
	52	Garhur	ni	85°	°57′35.4′′	25°34′0.5′′	Bhagv		Begusarai		8.9	446	285.44	27	7 134	4
	53	Manup	pur	<u>85°</u>	°57′35.4′′	25°35′33.3′	'' Bhagw	vanpur H	Begusarai	Handpump	8.85	510	326.4	30) 14(J
	54	Dohta		<u>85°</u>	°59′22.8′′	25°35′22.3′	'' Bhagw	vanpur H	Begusarai	Handpump	8.1	1221	781.44	0	537	7
	55	Jagdis	Handpump	<u></u>	°00′40.6′′	25°34′45.8′	^{''} Bhagw	vanpur H	Begusarai	Handpump		1270	812.8	0		
	56	Sanjat	(As)		°01′3.4′′	25°35′49.1′	Ŭ	vanpur H	Begusarai	Handpump	8.54	455	291.2	9	195	5
	57	Tajpur			°01′1′′	25°34′17.1′			Begusarai		8.4	1154	738.56			
	58		rpur(As)		°02′21′′	25°34′23.1′	- U		Begusarai			517	330.88			
	59	Naula		86°	°03′55.5′′	25°33′29.1′	'' Bhagw	wanpur H	Begusarai	Handpump	8.33	1625	1040	18	8 677	7

1. Salient Information

Name of the Block and Area (in Km²) Birpur

District/ State BegusaraiBihar/

Rainfall

The normal annual rainfall of Begusarai district is 1102mm of which %80occurs during the monsoon season. The normal rainfall during monsoon season is 889mm and during non-monsoon season is 213mm.

Agriculture and Irrigation

The Block falls in the Agro-climatic Zone I. The cropping sequence followed in Agro-climatic Zone I is Rice- Wheat, Rice- Rai, Rice-Sweet Potato, Rice-Maize, Maize-Wheat, Maize-Sweet Potato, Maize-Rai, Rice-lentil and Rice-linseed. The soils in this zone are sandy loam and loam with pH in the range of 6.5-8.4 The variation of rainfall in this zone is from 1040-1450 mm and the temperature varies from 36.6 to 7.7°C.

Ground water resource availability and extraction

The dynamic ground water resource of Birpur Block has been assessed as 17.92 MCM. The gross ground water draft for all uses stands at 16.56 MCM. The stage of Development is 92.4%(Annexure I).

Water level behavior

The depth to water level varies from 4m to 6 m during the pre-monsoon season and from 2 to 6 m during the post-monsoon season.

2. Aquifer Disposition

The area is bestowed with two- aquifer system. The section depicting the aquifer disposition is shown below.

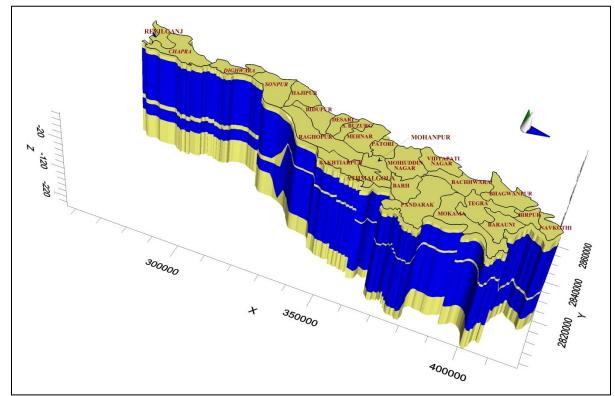


Fig 1:3D View of aquifer disposition

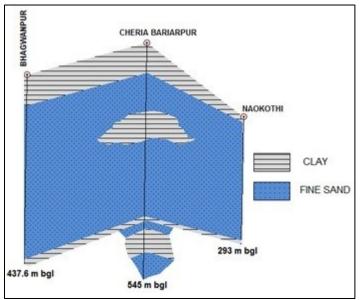
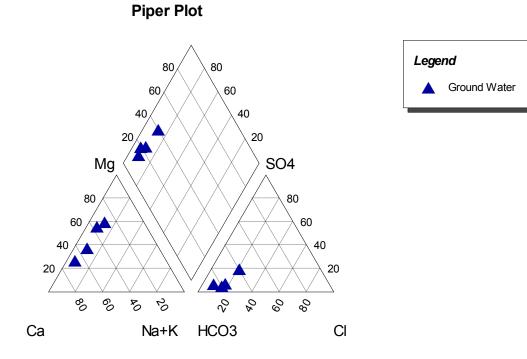
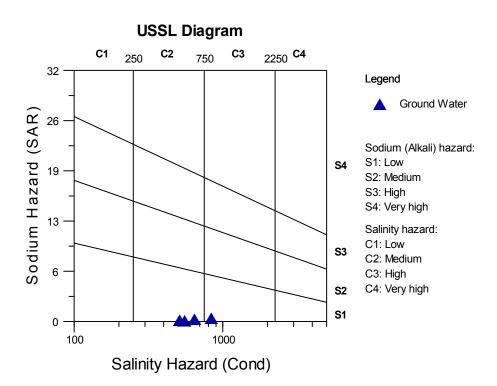


Fig 2: 2D View of aquifer disposition


The overall stage of groundwater development in the Block is 92.4%. Arsenic contamination of groundwater has been reported from the 1^{st} aquifer in the younger alluvial belt upto the depth of 60m. Ground water exploration has revealed that the 2^{nd} aquifer which is encountered below the clay layer separating the 1^{st} and the 2^{nd} aquifer is


safe from arsenic contamination. The 2nd aquifer is thus recommended for community drinking water supply. Even in the 1st aquifer, the concentration of arsenic below the depth of 60 m has been found within the permissible limit, however, these are vulnerable to contamination with further groundwater development as they are part of the same contaminated aquifer. It is therefore recommended to develop the groundwater from the lower parts of the 1st aquifer only through hand-pumps. Energised extraction should be discouraged as this would accelerate the vertical mixing with the arsenic contaminated layers.

The 2^{nd} Aquifer is recommended only for extraction for drinking water supply.

Chemical quality of ground water and contamination

As the stage of groundwater development is within the safe limits and there is no long-term water level decline in the area, the need for artificial recharge is not felt.

5. Demand side interventions

In view of the issue of arsenic contamination, it is recommended to use the 2^{nd} Aquifer solely for meeting the drinking water supply requirement. Necessary regulations to enforce this recommendation in the arsenic affected Blocks may be made so as to keep the 2^{nd} aqufer safe from arsenic contamination.

Annexure I

Dynamic Ground Water Resource Estimation

		Recharge	Recharge	Recharge	Recharge	Total	Provision	Net Annual	Existing	Existing	Existing	Allocation for	Net Ground	Stage of	Category:
		from	from	from	from other	Annual	for Natural	Ground	Gross	Gross	Gross Ground	Domestic and	Water	Ground	Safe/Semi-
		Rainfall	other	Rainfall	sources	Ground	Discharge	Water	Ground	Ground	Water Draft	Industrial	Availability for	Water	critical/Crit
		during	sources	during	during non-	Water		Availability	Water	water Draft	For all Uses	Requirement	future irrigation	Developm	l/Over-
		monsoon	during	non-	monsoon	Recharge			Draft for	for	(10+11)	supply upto	development	ent (%)	exploited
District	Block	season	monsoon	monsoon	season				Irrigation	Domestic		year 2025	(9-10-13)		
District	DIOCK		season	season						and					
										Industrial					
										Water					
										Supply					
December	D	1244	157	107	202	1001	100	1702	1506	150	1(5)	259	20	02.4	G
Begusarai	Birpur	1344	157	197	293	1991	199	1792	1506	150	1656	258	29	92.4	Semi-
															Critical

Annexure II

Chemical Analysis of Ground Water Sample

Sample													
No.	Location	Long	Lat	Block	District	Source	pН	EC	tds	СО3	HCO3-	Cl-	F
60	Pakdi	86°05′35.5′′	25°32′1.5″	Birpur	Begusarai	Handpump	8.72	857	548.48	15	293	64	0.7
61	Parra(As)	86°05′57.8′′	25°29′42.6′′	Birpur	Begusarai	Handpump	8.5	660	422.4	27	232	32	0.94
62	Phulkari	86°06′17.2′′	25°29′9.5′′	Birpur	Begusarai	Handpump	8.65	524	335.36	27	214	14	1.2
63	Kajichak	86°07′2.8′′	25°28′8.2′′	Birpur	Begusarai	Handpump	8.5	567	362.88	21	232	28	0.6

1. Salient Information

Name of the Block and Area (in Km²) Bidupur

District/ State VaishaliBihar/

Rainfall

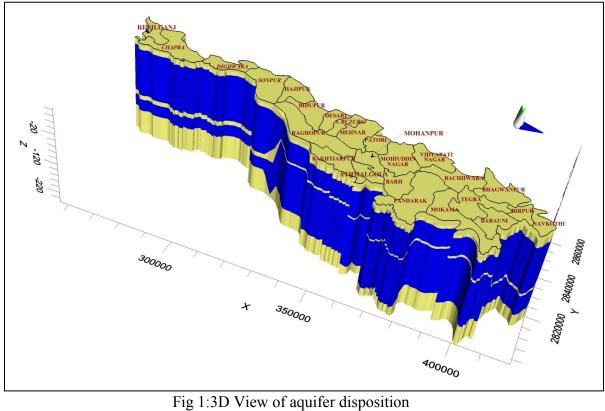
The normal annual rainfall of Vaishali district is 1089mm of which %84occurs during the monsoon season. The normal rainfall during monsoon season is 922mm and during non-monsoon season is 167mm.

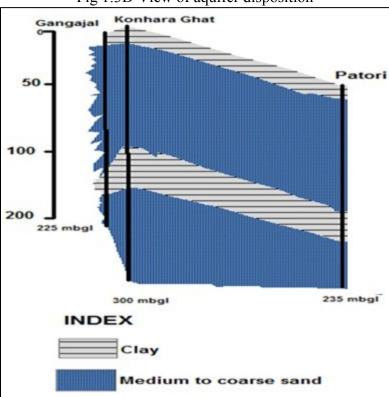
Agriculture and Irrigation

The Block falls in the Agro-climatic Zone I. The cropping sequence followed in Agro-climatic Zone I is Rice- Wheat, Rice- Rai, Rice-Sweet Potato, Rice-Maize, Maize-Wheat, Maize-Sweet Potato, Maize-Rai, Rice-lentil and Rice-linseed. The soils in this zone are sandy loam and loam with pH in the range of 6.5-8.4 The variation of rainfall in this zone is from 1040-1450 mm and the temperature varies from 36.6 to 7.7°C.

Ground water resource availability and extraction

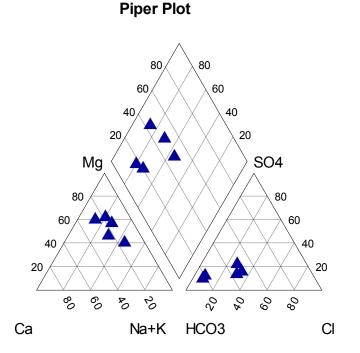
The dynamic ground water resource of Bidupur Block has been assessed as 75.93 MCM. The gross ground water draft for all uses stands at 27.51 MCM. The stage of Development is 36.2%.


Water level behavior


The depth to water level varies from 4m to 8m during the pre-monsoon season and from 2 to 6 m during the post-monsoon season.

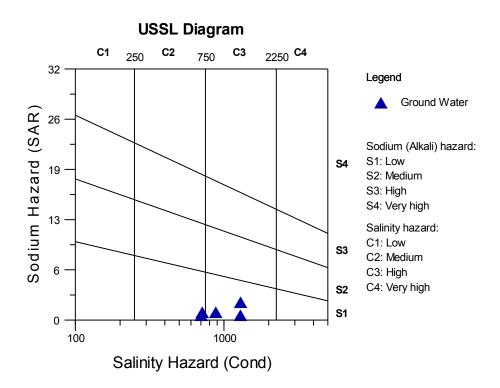
2. Aquifer Disposition

The area is bestowed with two- aquifer system. The section depicting the aquifer disposition is shown below (Fig 1&2).


disposition Fig 2: 2D View of aquifer



The overall stage of groundwater development in the Block is 36.2%. Thus sufficient scope exists for groundwater development in the Block. Arsenic contamination of groundwater has been reported from the 1st aquifer in the younger alluvial belt upto the depth of 60m. Ground water exploration has revealed that the 2nd aquifer which is encountered below the clay layer separating the 1st and the 2nd aquifer is safe from arsenic contamination. The 2nd aquifer is thus recommended for community drinking water supply. Even in the 1st aquifer, the concentration of arsenic below the depth of 60 m has been found within the permissible limit, however, these are vulnerable to contamination with further groundwater development as they are part of the same contaminated aquifer. It is therefore recommended to develop the groundwater from the lower parts of the 1st aquifer only through hand-pumps. Energised extraction should be discouraged as this would accelerate the vertical mixing with the arsenic contaminated layers.


The 2nd Aquifer is recommended only for extraction for drinking water supply.

Chemical quality of ground water and contamination

As the stage of groundwater development is within the safe limits and there is no long-term water level decline in the area, the need for artificial recharge is not felt.

5. Demand side interventions

In view of the issue of arsenic contamination, it is recommended to use the 2^{nd} Aquifer solely for meeting the drinking water supply requirement. Necessary regulations to enforce this recommendation in the arsenic affected Blocks may be made so as to keep the 2^{nd} aqufer safe from arsenic contamination.

Annexure I

Dynamic Ground Water Resource Estimation

		Recharge	Recharge	Recharge	Recharge	Total	Provision	Net Annual	Existing	Existing	Existing	Allocation for	Net Ground Water	Stage of	Catego
		-	-	-	e				-	-	-			-	
		from	from	from	from other	Annual	for Natural	Ground	Gross	Gross	Gross Ground	Domestic and	Availability for	Ground	Safe/S
		Rainfall	other	Rainfall	sources	Ground	Discharge	Water	Ground	Ground	Water Draft	Industrial	future irrigation	Water	critical
		during	sources	during	during non-	Water		Availability	Water	water Draft	For all Uses	Requirement	development (9-	Developm	al/Ove
		monsoon	during	non-	monsoon	Recharge			Draft for	for	(10+11)	supply upto	10-13)	ent (%)	exploit
District	Block	season	monsoon	monsoon	season				Irrigation	Domestic		year 2025			
District	DIOCK		season	season						and					
										Industrial					
										Water					
										Supply					
										······································					
Vaishali	Bidupur	2530	1864	421	3178	7992	400	7593	2369	382	2751	562	4662	36.2	Safe
v aisiiali	Biaupui	2330	1004	721	5170	1992	400	1575	2309	562	2131	502	4002	50.2	Sale

Annexure II

Chemical Analysis of Ground Water Sample

									1		-	
Sample												
No.	Location	Long	Lat	Block	District	Source	pН	EC	tds	CO3	HCO3-	C
16	Maniyarpur	85.3938	25.62242	Biddupur	Vaishali	Handpump	7.22	719	460.16	0	317	
17	Near Kutubpur Chauk	85.3704	25.62606	Biddupur	Vaishali	Handpump	7.1	1321	845.44	0	409	
	Opposite Biddupur Police											
18	Station	85.3329	25.64328	Biddupur	Vaishali	Handpump	7.96	732	468.48	0	336	
88	Khalsa chowk	85.37797	25.64038	Bidupur	Vaishali	Handpump	8.26	1328	849.92	0	341.6	1(
89	Pakauli	85.28438	25.67369	Bidupur	Vaishali	Handpump	8.13	902	577.28	0	237.9	9

1. Salient Information

Name of the Block and Area (in Km²) Hajipur

District/ State VaishaliBihar/

Rainfall

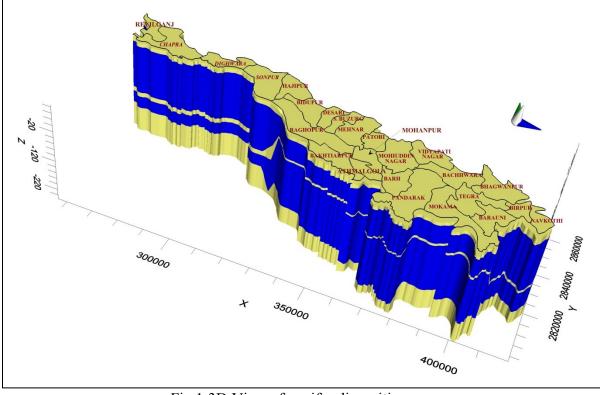
The normal annual rainfall of Vaishali district is 1089mm of which %84occurs during the monsoon season. The normal rainfall during monsoon season is 922mm and during non-monsoon season is 167mm.

Agriculture and Irrigation

The Block falls in the Agro-climatic Zone III B. The cropping sequence followed in this zone is Rice- Wheat, Rice-Gram, Rice- lentil and Rice- Rai. The soils in this zone are sandy loam, clay loam, laom and clay with pH in the range of 6.8-8. The variation of rainfall in this zone is from 990 mm to 1240 mm and the temperature varies from 37.1 to 7.8° C.

Ground water resource availability and extraction

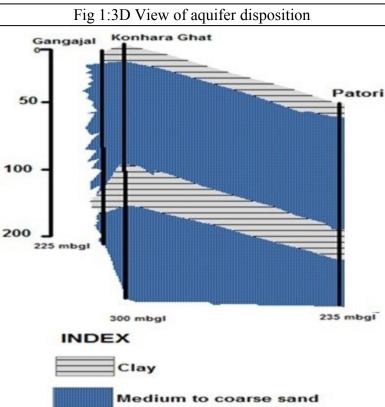
The dynamic ground water resource of Hajipur Block has been assessed as 33.89 MCM. The gross ground water draft for all uses stands at 24.71MCM. The stage of Development is 72.9%(Annexure I).

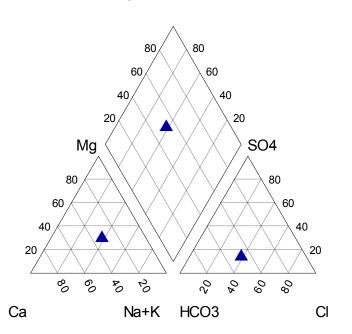

Water level behavior

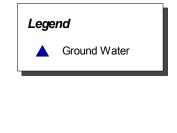
The depth to water level varies from 6m to 10 m during the pre-monsoon season and from 2 to 6 m during the post-monsoon season.

2. Aquifer Disposition

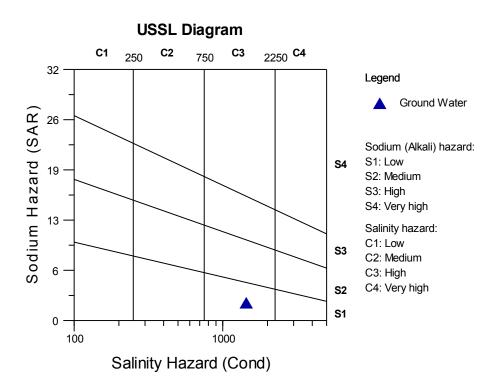
The area is bestowed with two- aquifer system. The section depicting the aquifer disposition is shown below(Fig 1 & 2).




Fig 2: 2D View of aquifer disposition


The overall stage of groundwater development in the Block is 72.9%. Arsenic contamination of groundwater has been reported from the 1st aquifer in the younger alluvial belt upto the depth of 60m. Ground water exploration has revealed that the 2nd aquifer which is encountered below the clay layer separating the 1st and the 2nd aquifer is safe from arsenic contamination. The 2nd aquifer is thus recommended for community drinking water supply. Even in the 1st aquifer, the concentration of arsenic below the depth of 60 m has been found within the permissible limit, however, these are vulnerable to contaminated aquifer. It is therefore recommended to develop the groundwater from the lower parts of the 1st aquifer only through hand-pumps. Energised extraction should be discouraged as this would accelerate the vertical mixing with the arsenic contaminated layers.

The 2nd Aquifer is recommended only for extraction for drinking water supply.


Chemical quality of ground water and contamination

As the stage of groundwater development is within the safe limits and there is no long-term water level decline in the area, the need for artificial recharge is not felt.

5. Demand side interventions

In view of the issue of arsenic contamination, it is recommended to use the 2^{nd} Aquifer solely for meeting the drinking water supply requirement. Necessary regulations to enforce this recommendation in the arsenic affected Blocks may be made so as to keep the 2^{nd} aqufer safe from arsenic contamination.

Annexure I

Dynamic Ground Water Resource Estimation

		Recharge	Recharge	Recharge	Recharge	Total	Provision	Net Annual	Existing	Existing	Existing	Allocation for	Net Ground Water	Stage of	Catego
		from	from	from	from other	Annual	for Natural	Ground	Gross	Gross	Gross Ground	Domestic and	Availability for	Ground	Safe/S
		Rainfall	other	Rainfall	sources	Ground	Discharge	Water	Ground	Ground	Water Draft	Industrial	future irrigation	Water	critical
		during	sources	during	during non-	Water		Availability	Water	water Draft	For all Uses	Requirement	development (9-	Developm	al/Ove
		monsoon	during	non-	monsoon	Recharge			Draft for	for	(10+11)	supply upto	10-13)	ent (%)	exploit
District	Block	season	monsoon	monsoon	season				Irrigation	Domestic		year 2025			
District	DIOCK		season	season						and					
										Industrial					
										Water					
										Supply					
Vaishali	Hajipur	2657	421	363	323	3765	377	3389	2221	249	2471	367	800	72.9	Safe

Annexure II

Chemical Analysis of Ground Water Sample

Sample														
No.	Location	Long	Lat	Block	District	Source	pН	EC	tds	CO3	HCO3-	Cl-	F	S
85	Nawada Khurd	85.16733	25.62366	Hajipur	Vaishali	Handpump	8.08	1475	944	0	353.8	173.754	0.78	ç

1. Salient Information

Name of the Block and Area (in Km²) Raghopur

District/ State VaishaliBihar/

Rainfall

The normal annual rainfall of Vaishali district is 1089mm of which %84occurs during the monsoon season. The normal rainfall during monsoon season is 922mm and during non-monsoon season is 167mm.

Agriculture and Irrigation

The Block falls in the Agro-climatic Zone III B. The cropping sequence followed in this zone is Rice- Wheat, Rice-Gram, Rice- lentil and Rice- Rai. The soils in this zone are sandy loam, clay loam, laom and clay with pH in the range of 6.8-8. The variation of rainfall in this zone is from 990 mm to 1240 mm and the temperature varies from 37.1 to 7.8° C.

Ground water resource availability and extraction

The dynamic ground water resource of Raghopur Block has been assessed as 69.92 MCM. The gross ground water draft for all uses stands at 29.54MCM. The stage of Development is 42.2%(Annexure I).

Water level behavior

The depth to water level varies from 6m to 10 m during the pre-monsoon season and from 2 to 8 m during the post-monsoon season.

2. Aquifer Disposition

The area is bestowed with two- aquifer system. The section depicting the aquifer disposition is shown below(Fig 1).

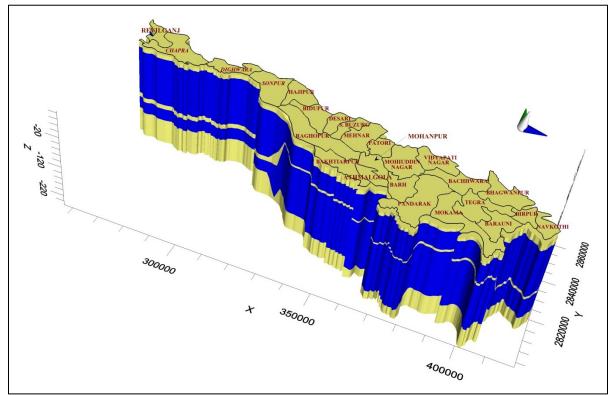
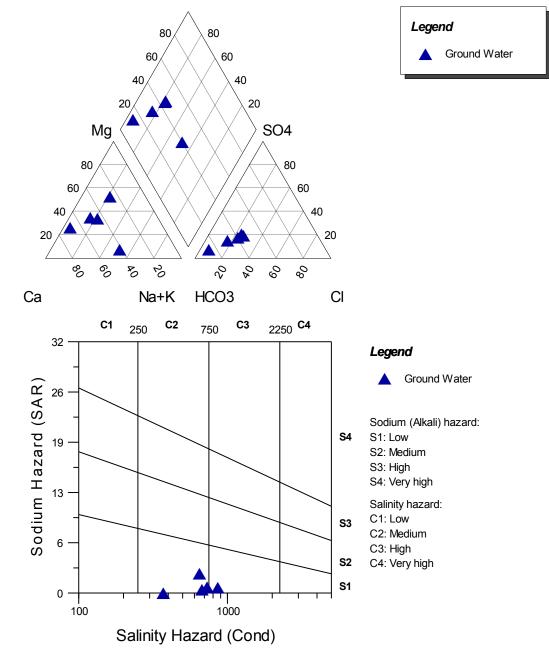



Fig 1:3D View of aquifer disposition

The overall stage of groundwater development in the Block is 42.2%. Thus sufficient scope exists for groundwater development in the Block. Arsenic contamination of groundwater has been reported from the 1st aquifer in the younger alluvial belt upto the depth of 60m. Ground water exploration has revealed that the 2nd aquifer which is encountered below the clay layer separating the 1st and the 2nd aquifer is safe from arsenic contamination. The 2nd aquifer is thus recommended for community drinking water supply. Even in the 1st aquifer, the concentration of arsenic below the depth of 60 m has been found within the permissible limit, however, these are vulnerable to contamination with further groundwater development as they are part of the same contaminated aquifer. It is therefore recommended to develop the groundwater from the lower parts of the 1st aquifer only through hand-pumps. Energised extraction should be discouraged as this would accelerate the vertical mixing with the arsenic contaminated layers.

The 2nd Aquifer is recommended only for extraction for drinking water supply.

Chemical quality of ground water and contamination

4. Ground water resource enhancement

As the stage of groundwater development is within the safe limits and there is no longterm water level decline in the area, the need for artificial recharge is not felt.

5. Demand side interventions

In view of the issue of arsenic contamination, it is recommended to use the 2^{nd} Aquifer solely for meeting the drinking water supply requirement. Necessary regulations to enforce this recommendation in the arsenic affected Blocks may be made so as to keep the 2^{nd} aqufer safe from arsenic contamination.

Annexure I

Dynamic Ground Water Resource Estimation

		Recharge	Recharge	Recharge	Recharge	Total	Provision	Net Annual	Existing	Existing	Existing	Allocation for	Net Ground	Stage of	Categ
		from	from	from	from other	Annual	for Natural	Ground	Gross	Gross	Gross Ground	Domestic and	Water	Ground	Safe/S
		Rainfall	other	Rainfall	sources	Ground	Discharge	Water	Ground	Ground	Water Draft	Industrial	Availability for	Water	critica
		during	sources	during	during non-	Water		Availability	Water	water Draft	For all Uses	Requirement	future irrigation	Developm	al/Ove
		monsoon	during	non-	monsoon	Recharge			Draft for	for Domestic	(10+11)	supply upto	development	ent (%)	exploi
District	Block	season	monsoon	monsoon	season				Irrigation	and		year 2025	(9-10-13)		
District	DIOCK		season	season						Industrial					
										Water					
										Supply					
X7 · 1 1·	D 1	(0(0	102	020	270	77(0)		(000	2(00	246	2054	500	2075	40.0	
Vaishali	Raghopur	6068	493	830	378	7769	777	6992	2609	346	2954	509	3875	42.2	Safe

Chemical Analysis of Ground Water Sample

Annexure II

Sample		1	1	1	1	1			1			/
No.	Location	Long	Lat	Block	District	Source	pН	EC	tds	CO3	HCO3-	Cl-
74	Malikpur(DG)	85.30997	25.5737	Raghopur	Vaishali	Dugwell	7.83	882	564.48	0	237.9	70.92
75	Jagdispur(Handpump)	85.33655	25.5737	Raghopur	Vaishali	Handpump	7.96	664	424.96	0	207.4	49.644
76	Raghopur(Handpump)	85.38222	25.55705	Raghopur	Vaishali	Handpump	8	690	441.6	0	231.8	35.46
77	Raghopur(DW)	85.38222	25.55705	Raghopur	Vaishali	Dugwell	8.18	379	242.56	0	201.3	10.638
78	Medanchowk	85.3242	25.5592	Raghopur	Vaishali	Handpump	8.01	747	478.08	0	250.1	67.374

1. Salient Information

Name of the Block and Area (in Km²) Desri

District/ State VaishaliBihar/

Rainfall

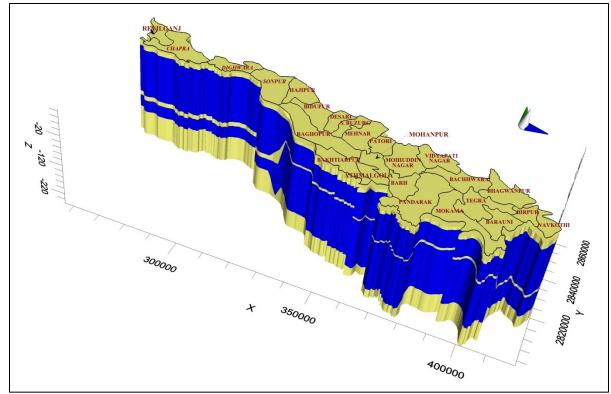
The normal annual rainfall of Vaishali district is 1089mm of which %84occurs during the monsoon season. The normal rainfall during monsoon season is 922mm and during non-monsoon season is 167mm.

Agriculture and Irrigation

The Block falls in the Agro-climatic Zone I. The cropping sequence followed in Agro-climatic Zone I is Rice- Wheat, Rice- Rai, Rice-Sweet Potato, Rice-Maize, Maize-Wheat, Maize-Sweet Potato, Maize-Rai, Rice-lentil and Rice-linseed. The soils in this zone are sandy loam and loam with pH in the range of 6.5-8.4 The variation of rainfall in this zone is from 1040-1450 mm and the temperature varies from 36.6 to 7.7°C.

Ground water resource availability and extraction

The dynamic ground water resource of Desri Block has been assessed as 23.29 MCM. The gross ground water draft for all uses stands at 10.99 MCM. The stage of Development is 47.2%(Annexure I).


Water level behavior

The depth to water level varies from 7.26 m to 7.37 m during the pre-monsoon season and from 4.84 to 5.28 m during the post-monsoon season.

2. Aquifer Disposition

The area is bestowed with two- aquifer system. The section depicting the aquifer disposition is shown below.(2 & 1 Fig)

fer dispositionFig 1:3D View of aqui

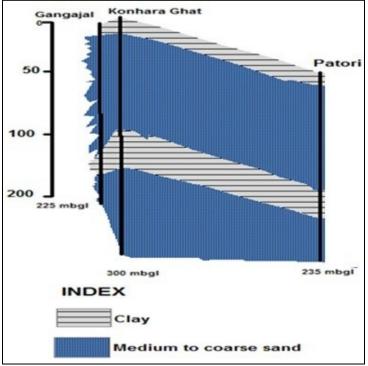
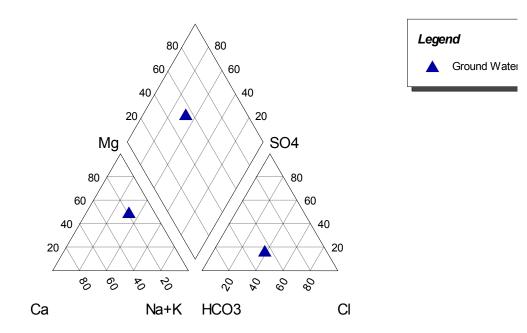
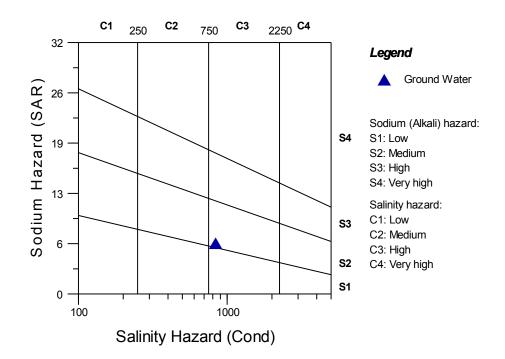


Fig 1 :2D View of aquifer disposition



The overall stage of groundwater development in the Block is 47.2%. Thus sufficient scope exists for groundwater development in the Block.


Arsenic contamination of groundwater has been reported from the 1st aquifer in the younger alluvial belt upto the depth of 60m. Ground water exploration has revealed that the 2nd aquifer which is encountered below the clay layer separating the 1st and the 2nd aquifer is safe from arsenic contamination. The 2nd aquifer is thus recommended for community drinking water supply. Even in the 1st aquifer, the concentration of arsenic below the depth of 60 m has been found within the permissible limit; however, these are vulnerable to contamination with further groundwater development as they are part of the same contaminated aquifer. It is therefore recommended to develop the groundwater from the lower parts of the 1st aquifer only through hand-pumps. Energized extraction should be discouraged as this would accelerate the vertical mixing with the arsenic contaminated layers.

The 2nd Aquifer is recommended only for extraction for drinking water supply.

Chemical quality of ground water and contamination

As the stage of groundwater development is within the safe limits and there is no long-term water level decline in the area, the need for artificial recharge is not felt.

5. Demand side interventions

In view of the issue of arsenic contamination, it is recommended to use the 2^{nd} Aquifer solely for meeting the drinking water supply requirement. Necessary regulations to enforce this recommendation in the arsenic affected Blocks may be made so as to keep the 2^{nd} aqufer safe from arsenic contamination.

Annexure- I

Dynamic Ground Water Resource Estimation

		Recharge	Recharge	Recharge	Recharge	Total	Provision	Net	Existin	Existing	Existing	Allocation for	Net Ground	Stage of	Category:
		from	from	from	from other	Annual	for Natural	Annual	g	Gross	Gross Ground	Domestic and	Water	Ground	Safe/Semi-
		Rainfall	other	Rainfall	sources	Ground	Discharge	Ground	Gross	Ground	Water Draft	Industrial	Availability for	Water	critical/Critic
Dis		during	sources	during	during non-	Water		Water	Groun	water Draft	For all Uses	Requirement	future irrigation	Developm	al/Over-
	Block	monsoon	during	non-	monsoon	Recharge		Availabi	d	for Domestic	(10+11)	supply upto	development	ent (%)	exploited
tric	DIOCK	season	monsoon	monsoon	season			lity	Water	and		year 2025	(9-10-13)		
ι			season	season					Draft	Industrial					
									for	Water					
									Irrigati	Supply					
									on						
Va	Desri /	1993	183	619	272	2588	259	2329	962	137	1099	202	1165	47.2	Safe
ish															
ali	Dromaroi														
	Premraj														

Annexure II

Chemical Analysis of Ground Water Sample

	••	i intar j bib ei		and samp											
ſ	Sample														
	No.	Location	Long	Lat	Block	District	Source	pН	EC	tds	СО3	HCO3-	Cl-	F	SO4
	87	Khurampur	85.42865	25.6404	Desri	Vaishali	Handpump	8.32	856	547.84	0.2	262.3	53.19	0.87	78.

1. Salient Information

Name of the Block and Area (in Km²) Chapra

District/ State SaranBihar/

Rainfall

The normal annual rainfall of Saran district is 1068mm of which %86occurs during the monsoon season. The normal rainfall during monsoon season is 929mm and during non-monsoon season is 139mm.

Agriculture and Irrigation

The Block falls in the Agro-climatic Zone I. The cropping sequence followed in Agro-climatic Zone I is Rice- Wheat, Rice- Rai, Rice-Sweet Potato, Rice-Maize, Maize-Wheat, Maize-Sweet Potato, Maize-Rai, Rice-lentil and Rice-linseed. The soils in this zone are sandy loam and loam with pH in the range of 6.5-8.4 The variation of rainfall in this zone is from 1040-1450 mm and the temperature varies from 36.6 to 7.7°C.

Ground water resource availability and extraction

The dynamic ground water resource of Chapra Block has been assessed as 53.99MCM. The gross ground water draft for all uses stands at 28.02 MCM. The stage of Development is 51.9%(Annexure I).

Water level behavior

The depth to water level varies from 4m to 10 m during the pre-monsoon season and from 2 to 8 m during the post-monsoon season.

2. Aquifer Disposition

The area is bestowed with two- aquifer system. The section depicting the aquifer disposition is shown below(Fig 1).

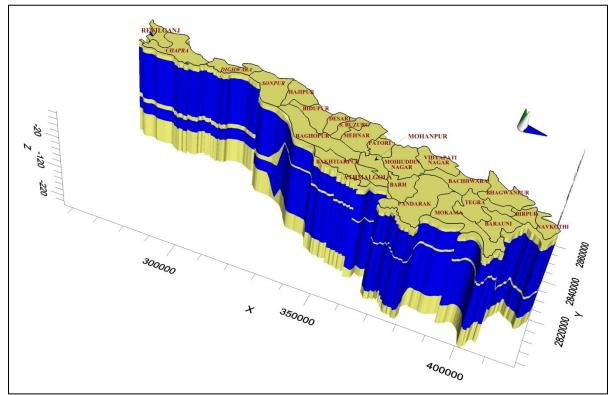
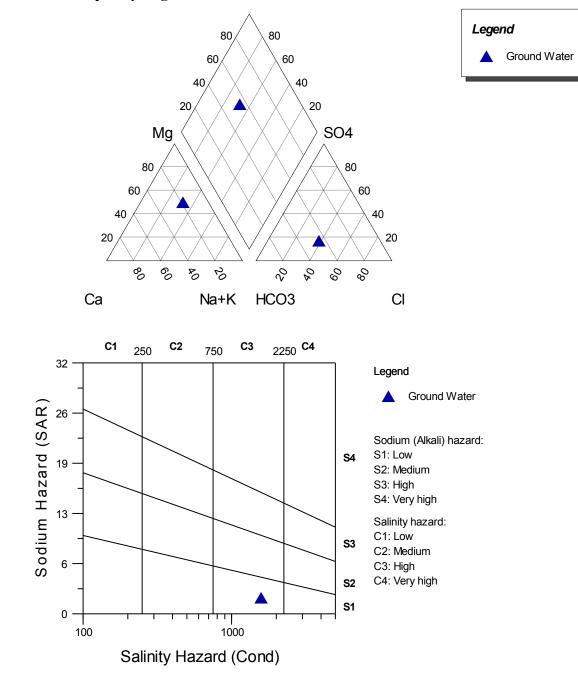
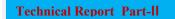



Fig 1:3D View of aquifer disposition

The overall stage of groundwater development in the Block is 51.9%. Thus sufficient scope exists for groundwater development in the Block. Arsenic contamination of groundwater has been reported from the 1st aquifer in the younger alluvial belt upto the depth of 60m. Ground water exploration has revealed that the 2nd aquifer which is encountered below the clay layer separating the 1st and the 2nd aquifer is safe from arsenic contamination. The 2nd aquifer is thus recommended for community drinking water supply. Even in the 1st aquifer, the concentration of arsenic below the depth of 60 m has been found within the permissible limit, however, these are vulnerable to contamination with further groundwater development as they are part of the same contaminated aquifer. It is therefore recommended to develop the groundwater from the lower parts of the 1st aquifer only through hand-pumps. Energised extraction should be discouraged as this would accelerate the vertical mixing with the arsenic contaminated layers.

The 2nd Aquifer is recommended only for extraction for drinking water supply.

Chemical quality of ground water and contamination



As the stage of groundwater development is within the safe limits and there is no long-term water level decline in the area, the need for artificial recharge is not felt.

5. Demand side interventions

In view of the issue of arsenic contamination, it is recommended to use the 2^{nd} Aquifer solely for meeting the drinking water supply requirement. Necessary regulations to enforce this recommendation in the arsenic affected Blocks may be made so as to keep the 2^{nd} aqufer safe from arsenic contamination.

Annexure I

Dynamic Ground Water Resource Estimation

District	Block	Recharge from Rainfall during monsoon season	Recharge from other sources during monsoon season	Recharge from Rainfall during non- monsoon season	Recharge from other sources during non- monsoon season	Total Annual Ground Water Recharge	Provision for Natural Discharge	Net Annual Ground Water Availability	Existing Gross Ground Water Draft for Irrigation	Existing Gross Ground water Draft for Domestic and Industrial Water Supply	Existing Gross Ground Water Draft For all Uses (10+11)	Allocation for Domestic and Industrial Requirement supply upto year 2025	Net Ground Water Availability for future irrigation development (9-10-13)	Stage of Ground Water Development (%)	Category: Safe/Semi- critical/Crit al/Over- exploited
Saran	Chapra	4387.6	534	569.8	507.7	5998.9	600	5399	2192	610	2802	782	2425	51.9	Safe

Annexure II

Chemical Analysis of Ground Water Sample

Sample														
No.	Location	Long	Lat	Block	District	Source	pН	EC	tds	CO3	HCO3-	Cl-	F	SO ₂
82	Mahadipur	84.84181	25.74023	Chapra	Saran	Handpump	8.04	1618	1035.52	0	402.6	209.214	0.67	129

1. Salient Information

Name of the Block and Area (in Km²) Dighwara

District/ State SaranBihar/

Rainfall

The normal annual rainfall of Saran district is 1068mm of which %86occurs during the monsoon season. The normal rainfall during monsoon season is 929mm and during non-monsoon season is 139mm.

Agriculture and Irrigation

The Block falls in the Agro-climatic Zone I. The cropping sequence followed in Agro-climatic Zone I is Rice- Wheat, Rice- Rai, Rice-Sweet Potato, Rice-Maize, Maize-Wheat, Maize-Sweet Potato, Maize-Rai, Rice-lentil and Rice-linseed. The soils in this zone are sandy loam and loam with pH in the range of 6.5-8.4 The variation of rainfall in this zone is from 1040-1450 mm and the temperature varies from 36.6 to 7.7°C.

Ground water resource availability and extraction

The dynamic ground water resource of Dighwara Block has been assessed as 26.28MCM. The gross ground water draft for all uses stands at 17.59 MCM. The stage of Development is 66.9% (Annexure I).

Water level behavior

The depth to water level varies from 6m to 10 m during the pre-monsoon season and from 4 to 6 m during the post-monsoon season.

2. Aquifer Disposition

The area is bestowed with two- aquifer system. The section depicting the aquifer disposition is shown below(Fig 1).

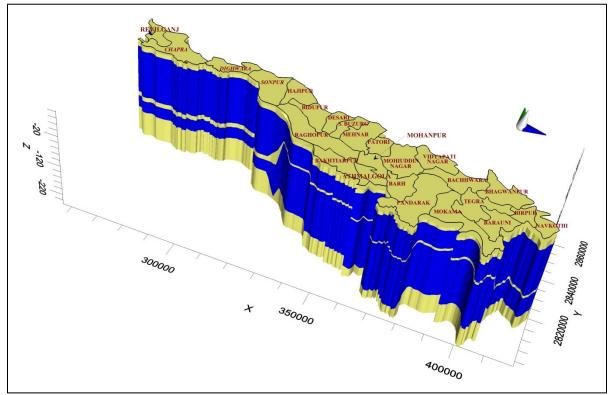
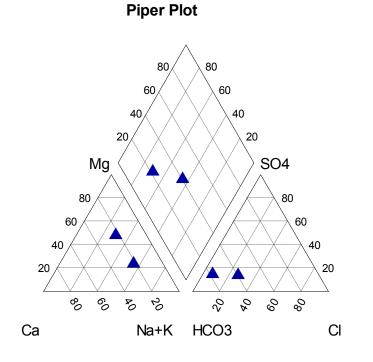
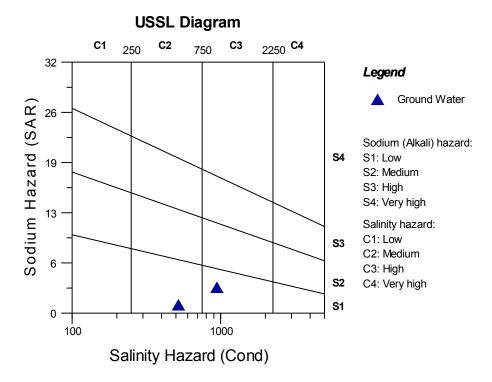



Fig 1:3D View of aquifer disposition

The overall stage of groundwater development in the Block is 66.9%. Arsenic contamination of groundwater has been reported from the 1st aquifer in the younger alluvial belt upto the depth of 60m. Ground water exploration has revealed that the 2nd aquifer which is encountered below the clay layer separating the 1st and the 2nd aquifer is safe from arsenic contamination. The 2nd aquifer is thus recommended for community drinking water supply. Even in the 1st aquifer, the concentration of arsenic below the depth of 60 m has been found within the permissible limit, however, these are vulnerable to contaminated aquifer. It is therefore recommended to develop the groundwater from the lower parts of the 1st aquifer only through hand-pumps. Energised extraction should be discouraged as this would accelerate the vertical mixing with the arsenic contaminated layers.


The 2nd Aquifer is recommended only for extraction for drinking water supply.

Chemical quality of ground water and contamination

As the stage of groundwater development is within the safe limits and there is no long-term water level decline in the area, the need for artificial recharge is not felt.

5. Demand side interventions

In view of the issue of arsenic contamination, it is recommended to use the 2^{nd} Aquifer solely for meeting the drinking water supply requirement. Necessary regulations to enforce this recommendation in the arsenic affected Blocks may be made so as to keep the 2^{nd} aqufer safe from arsenic contamination.

Annexure I

Dynamic Ground Water Resource Estimation

		Recharge	Recharge	Recharge	Recharge	Total	Provision	Net Annual	Existing	Existing	Existing	Allocation for	Net Ground	Stage of	Cate
District		from	from	from	from other	Annual	for Natural	Ground	Gross	Gross	Gross Ground	Domestic and	Water	Ground	Safe
	Block	Rainfall	other	Rainfall	sources	Ground	Discharge	Water	Ground	Ground	Water Draft	Industrial	Availability for	Water	criti
		during	sources	during	during non-	Water		Availability	Water	water Draft	For all Uses	Requirement	future irrigation	Developm	al/O
		monsoon	during	non-	monsoon	Recharge			Draft for	for Domestic	(10+11)	supply upto	development	ent (%)	expl
		season	monsoon	monsoon	season				Irrigation	and		year 2025	(9-10-13)		
	DIOCK		season	season						Industrial					
										Water					
										Supply					
Saran	Dichucero	2025.9	210	274	247.2	2765.0	138	2628	1472	297	1750	262	793	66.0	Sof
Saran	Dighwara	2025.8	219	2/4	247.3	2765.8	138	2628	1472	287	1759	363	195	66.9	Safe

Annexure II

Chemical Analysis of Ground Water Sample

Sample														
No.	Location	Long	Lat	Block	District	Source	pН	EC	tds	СО3	HCO3-	Cl-	F	SC
80	Sheetalpur	85.02886	25.75695	Dighwara	Saran	Handpump	8.3	532	340.48	18	244	14.184	0.5	4
81	Syedpur	84.98281	25.75694	Dighwara	Saran	Handpump	8.15	967	618.88	0	286.7	78.012	0.41	6

1. Salient Information

Name of the Block and Area (in Km²) Revilganj

District/ State SaranBihar/

Rainfall

The normal annual rainfall of Saran district is 1068mm of which %86occurs during the monsoon season. The normal rainfall during monsoon season is 929mm and during non-monsoon season is 139mm.

Agriculture and Irrigation

The Block falls in the Agro-climatic Zone I. The cropping sequence followed in Agro-climatic Zone I is Rice- Wheat, Rice- Rai, Rice-Sweet Potato, Rice-Maize, Maize-Wheat, Maize-Sweet Potato, Maize-Rai, Rice-lentil and Rice-linseed. The soils in this zone are sandy loam and loam with pH in the range of 6.5-8.4 The variation of rainfall in this zone is from 1040-1450 mm and the temperature varies from 36.6 to 7.7°C.

Ground water resource availability and extraction

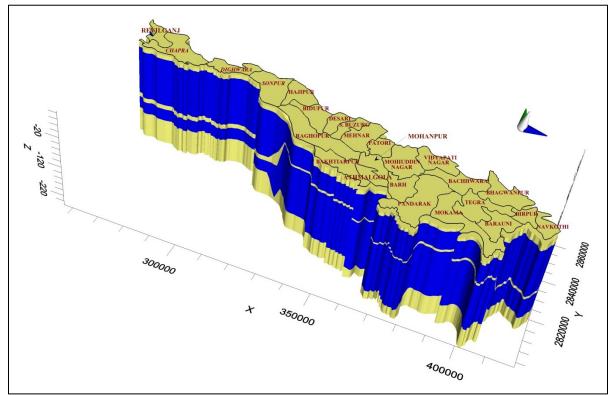
The dynamic ground water resource of Revilganj Block has been assessed as 33.43MCM. The gross ground water draft for all uses stands at 15.66 MCM. The stage of Development is 46.8% (Annexure I)

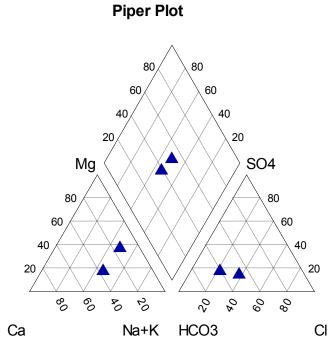
Water level behavior

The depth to water level varies from 4.89m to 10 m during the pre-monsoon season and from 3.85 to 8 m during the post-monsoon season.

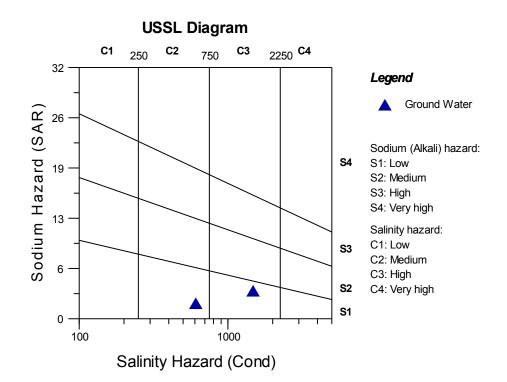
2. Aquifer Disposition

The area is bestowed with two- aquifer system. The section depicting the aquifer disposition is shown below(Fig 1).

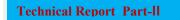



Fig 1:3D View of aquifer disposition

The overall stage of groundwater development in the Block is 46.8%. Thus sufficient scope exists for groundwater development in the Block. Arsenic contamination of groundwater has been reported from the 1st aquifer in the younger alluvial belt upto the depth of 60m. Ground water exploration has revealed that the 2nd aquifer which is encountered below the clay layer separating the 1st and the 2nd aquifer is safe from arsenic contamination. The 2nd aquifer is thus recommended for community drinking water supply. Even in the 1st aquifer, the concentration of arsenic below the depth of 60 m has been found within the permissible limit, however, these are vulnerable to contamination with further groundwater development as they are part of the same contaminated aquifer. It is therefore recommended to develop the groundwater from the lower parts of the 1st aquifer only through hand-pumps. Energised extraction should be discouraged as this would accelerate the vertical mixing with the arsenic contaminated layers.


The 2nd Aquifer is recommended only for extraction for drinking water supply.

Chemical quality of ground water and contamination



As the stage of groundwater development is within the safe limits and there is no long-term water level decline in the area, the need for artificial recharge is not felt.

5. Demand side interventions

In view of the issue of arsenic contamination, it is recommended to use the 2^{nd} Aquifer solely for meeting the drinking water supply requirement. Necessary regulations to enforce this recommendation in the arsenic affected Blocks may be made so as to keep the 2^{nd} aquifer safe from arsenic contamination.

Dynamic Ground Water Resource Estimation

District	Block	Recharge from Rainfall during monsoon season	Recharge from other sources during monsoon season	Recharge from Rainfall during non- monsoon season	Recharge from other sources during non- monsoon season	Total Annual Ground Water Recharge	Provision for Natural Discharge	Net Annual Ground Water Availability	Existing Gross Ground Water Draft for Irrigation	Existing Gross Ground water Draft for Domestic and Industrial Water Supply	Existing Gross Ground Water Draft For all Uses (10+11)	Allocation for Domestic and Industrial Requirement supply upto year 2025	Net Ground Water Availability for future irrigation development (9-10-13)	Stage of Ground Water Development (%)	Category: Safe/Semi- critical/Cri al/Over- exploited
Saran	Ravelganj	2931.3	189	380.7	213.5	3714.8	371	3343	1275	292	1566	355	1713	46.8	safe

Annexure II

Chemical Analysis of Ground Water Sample

Sample														
No.	Location	Long	Lat	Block	District	Source	pН	EC	tds	СО3	HCO3-	Cl-	F	SO4
83	Inai	84.68114	25.79019	Revelganj	Saran	Handpump	8.1	1514	968.96	0	433.1	205.668	0.6	12
	Nagri			Revelganj	Saran	Handpump	8.04	622		0	195.2	42.552	0.4	51
84	gaon	84.77317	25.80688	i to i oiguiij	~ un un	PP	0.01	° 	398.08	Ű	1,0.2		÷. i	01

Block wise Aquifer Maps and Management plans

1. Salient Information

Name of the Block and Area (in Km²) Sonpur

District/ State Saran/Bihar

Rainfall

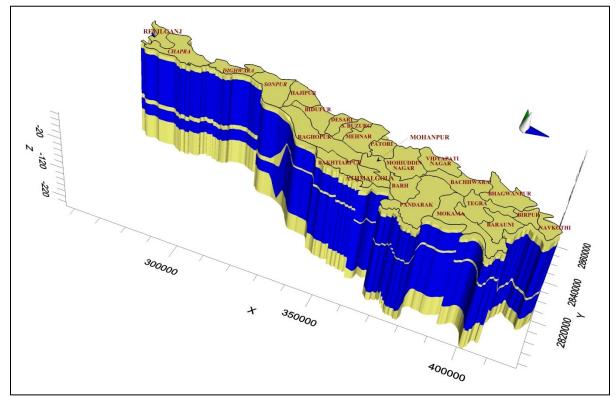
The normal annual rainfall of Saran district is 1068mm of which %86occurs during the monsoon season. The normal rainfall during monsoon season is 929mm and during non-monsoon season is 139mm.

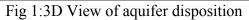
Agriculture and Irrigation

The Block falls in the Agro-climatic Zone I. The cropping sequence followed in Agro-climatic Zone I is Rice- Wheat, Rice- Rai, Rice-Sweet Potato, Rice-Maize, Maize-Wheat, Maize-Sweet Potato, Maize-Rai, Rice-lentil and Rice-linseed. The soils in this zone are sandy loam and loam with pH in the range of 6.5-8.4 The variation of rainfall in this zone is from 1040-1450 mm and the temperature varies from 36.6 to 7.7°C.

Ground water resource availability and extraction

The dynamic ground water resource of Sonpur Block has been assessed as 39.26 MCM. The gross ground water draft for all uses stands at 15.64 MCM. The stage of Development is 39.8%(Annexure I).


Water level behavior


The depth to water level varies from 4m to 8 m during the pre-monsoon season and from 2 to 6 m during the post-monsoon season.

2. Aquifer Disposition

The area is bestowed with two- aquifer system. The section depicting the aquifer disposition is shown below(Fig 1 & 2) .

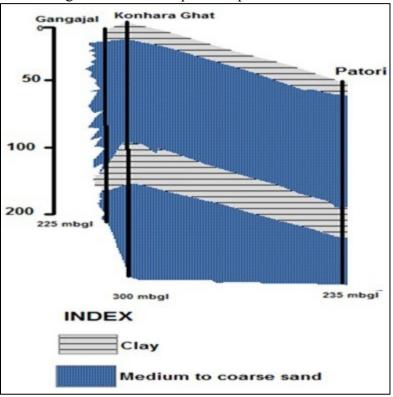
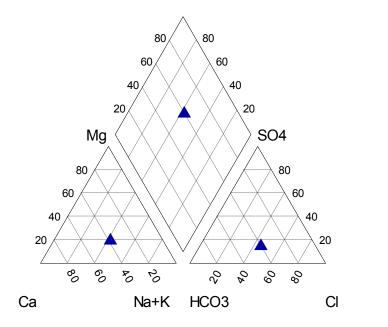
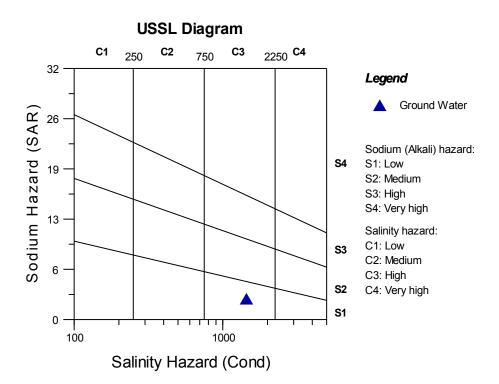


Fig 2: 2D View of aquifer disposition



3. Ground water resource, extraction, contamination and other issues

The overall stage of groundwater development in the Block is 39.8%. Thus sufficient scope exists for groundwater development in the Block. Arsenic contamination of groundwater has been reported from the 1st aquifer in the younger alluvial belt upto the depth of 60m. Ground water exploration has revealed that the 2nd aquifer which is encountered below the clay layer separating the 1st and the 2nd aquifer is safe from arsenic contamination. The 2nd aquifer is thus recommended for community drinking water supply. Even in the 1st aquifer, the concentration of arsenic below the depth of 60 m has been found within the permissible limit, however, these are vulnerable to contamination with further groundwater development as they are part of the same contaminated aquifer. It is therefore recommended to develop the groundwater from the lower parts of the 1st aquifer only through hand-pumps. Energised extraction should be discouraged as this would accelerate the vertical mixing with the arsenic contaminated layers.


The 2nd Aquifer is recommended only for extraction for drinking water supply.

Chemical quality of ground water and contamination

Legend
Ground Water

4. Ground water resource enhancement

As the stage of groundwater development is within the safe limits and there is no longterm water level decline in the area, the need for artificial recharge is not felt.

5. Demand side interventions

In view of the issue of arsenic contamination, it is recommended to use the 2^{nd} Aquifer solely for meeting the drinking water supply requirement. Necessary regulations to enforce this recommendation in the arsenic affected Blocks may be made so as to keep the 2^{nd} aqufer safe from arsenic contamination.

Dynamic Ground Water Resource Estimation

District	Block	Recharge from Rainfall during monsoon season	Recharge from other sources during monsoon season	Recharge from Rainfall during non- monsoon season	Recharge from other sources during non- monsoon season	Total Annual Ground Water Recharge	Provision for Natural Discharge	Net Annual Ground Water Availability	Existing Gross Ground Water Draft for Irrigation	Existing Gross Ground water Draft for Domestic and Industrial Water Supply	Existing Gross Ground Water Draft For all Uses (10+11)	Allocation for Domestic and Industrial Requirement supply upto year 2025	Net Ground Water Availability for future irrigation development (9-10-13)	Stage of Ground Water Developm ent (%)	Cate Safe criti al/O expl
Saran	Sonepur	3283.5	156	517.5	175.9	4132.9	207	3926	1050	513	1564	683	2192	39.8	Safe

Annexure II

Chemical Analysis of Ground Water Sample

Sample														ł
No.	Location	Long	Lat	Block	District	Source	pН	EC	tds	СО3	HCO3-	Cl-	F	ł
79	Govindchowk	85.18478	25.74033	Sonepur	Saran	Handpump	7.98	1478	945.92	0	274.5	191.484	0.62	

Block wise Aquifer Maps and Management plans

1. Salient Information

Name of the Block and Area (in Km²) Mohanpur

District/ State SamastipurBihar/

Rainfall

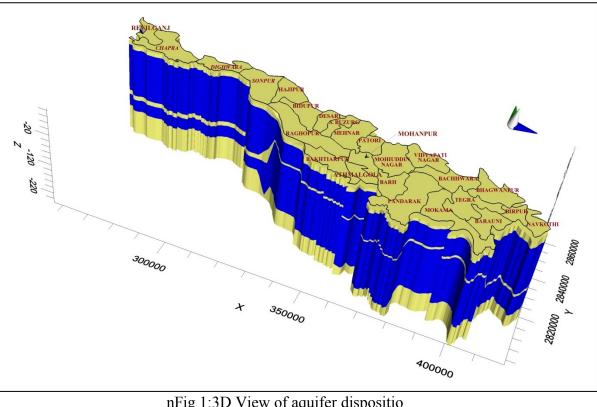
The normal annual rainfall of Samastipurdistrict is 1142mm of which %84 occurs during the monsoon season. The normal rainfall during monsoon season is 964 mm and during non-monsoon season is 178mm.

Agriculture and Irrigation

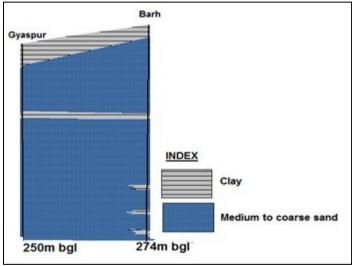
The Block falls in the Agro-climatic Zone I. The cropping sequence followed in Agro-climatic Zone I is Rice- Wheat, Rice- Rai, Rice-Sweet Potato, Rice-Maize, Maize-Wheat, Maize-Sweet Potato, Maize-Rai, Rice-lentil and Rice-linseed. The soils in this zone are sandy loam and loam with pH in the range of 6.5-8.4 The variation of rainfall in this zone is from 1040-1450 mm and the temperature varies from 36.6 to 7.7°C.

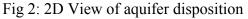
Ground water resource availability and extraction

The dynamic ground water resource of Samastipur Block has been assessed as 23.66MCM. The gross ground water draft for all uses stands at 7.93 MCM. The stage of Development is 33.5%(Annexure I).


Water level behavior

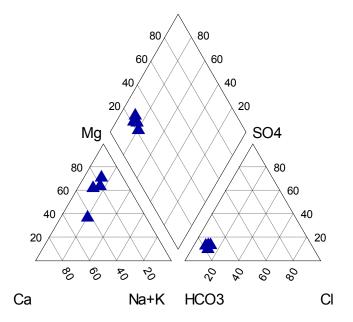
The depth to water level varies from 6m to 8 m during the pre-monsoon season and from 8to 10 m during the post-monsoon season.


2. Aquifer Disposition

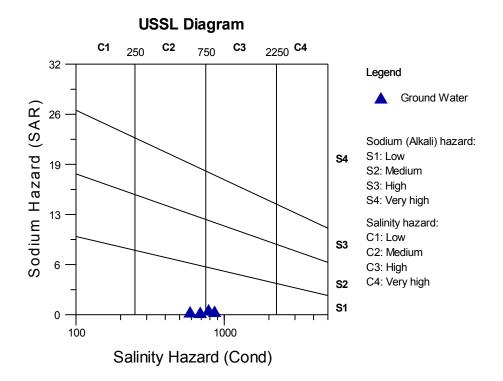

The area is bestowed with two- aquifer system. The section depicting the aquifer disposition is shown below.

nFig 1:3D View of aquifer dispositio

- 3. Ground water resource, extraction, contamination and other issues
 - The overall stage of groundwater development in the Block is 33.5%. Thus sufficient scope exists for groundwater development in the Block. Arsenic contamination of groundwater has been reported from the 1st aquifer in the younger alluvial belt upto the depth of 60m. Ground water exploration has revealed that the 2^{nd} aquifer which is encountered below the clay layer separating the 1^{st} and the 2^{nd} aquifer is safe from arsenic contamination. The 2^{nd} aquifer is thus recommended for community drinking water



Legend


Ground Water

supply. Even in the 1st aguifer, the concentration of arsenic below the depth of 60 m has been found within the permissible limit, however, these are vulnerable to contamination with further groundwater development as they are part of the same contaminated aquifer. It is therefore recommended to develop the groundwater from the lower parts of the 1st aquifer only through hand-pumps. Energised extraction should be discouraged as this would accelerate the vertical mixing with the arsenic contaminated layers. The 2nd Aquifer is recommended only for extraction for drinking water supply.

Chemical quality of ground water and contamination

4. Ground water resource enhancement

As the stage of groundwater development is within the safe limits and there is no long-term water level decline in the area, the need for artificial recharge is not felt.

5. Demand side interventions

In view of the issue of arsenic contamination, it is recommended to use the 2^{nd} Aquifer solely for meeting the drinking water supply requirement. Necessary regulations to enforce this recommendation in the arsenic affected Blocks may be made so as to keep the 2^{nd} aqufer safe from arsenic contamination.

Dynamic Ground Water Resource Estimation

		Rechar	Recharge	Recharge	Recharge	Total	Provision	Net Annual	Existing	Existing	Existing	Allocation for	Net Ground	Stage of	Cat
		ge	from	from	from other	Annual	for Natural	Ground	Gross	Gross	Gross Ground	Domestic and	Water	Ground	Safe
		from	other	Rainfall	sources	Ground	Discharge	Water	Ground	Ground	Water Draft	Industrial	Availability for	Water	criti
		Rainfal	sources	during	during non-	Water		Availability	Water	water Draft	For all Uses	Requirement	future irrigation	Development	ical
		1	during	non-	monsoon	Recharge			Draft for	for	(10+11)	supply upto	development	(%)	expl
District	Block	during	monsoon	monsoon	season				Irrigation	Domestic		year 2025	(9-10-13)		
District Block	monso	season	season						and						
		on								Industrial					
		season								Water					
										Supply					
<i>a</i>		10.10	100			0 101	105		(01	1.51			1.170		
Samastipur	Mohanpur	1949	120	333	89	2491	125	2366	621	171	793	272	1473	33.5	safe

Chemical Analysis of Ground Water Sample

Annexure II

Sample							pН	EC	tds	СО3	НСОЗ-	Cľ
No.	Location	Long	Lat	Block	District	Source						
1	Gadi Mohanpur	85.5718	25.56817	Mohanpur	Samastipur	Handpump	7.37	602	385.28	0	244	21
	Mohanpur College											
2	Chauk	85.5839	25.56272	Mohanpur	Samastipur	Handpump	7.34	880	563.2	0	366	35
3	Bhagara	85.5948	25.55994	Mohanpur	Samastipur	Handpump	7.27	803	513.92	0	293	21
4	Bilgama	85.6139	25.56397	Mohanpur	Samastipur	Handpump	7.35	706	451.84	0	311	32

Block wise Aquifer Maps and Management plans

1. Salient Information

Name of the Block and Area (in Km²) Mohiuddin Nagar

District/ State SamastipurBihar/

Rainfall

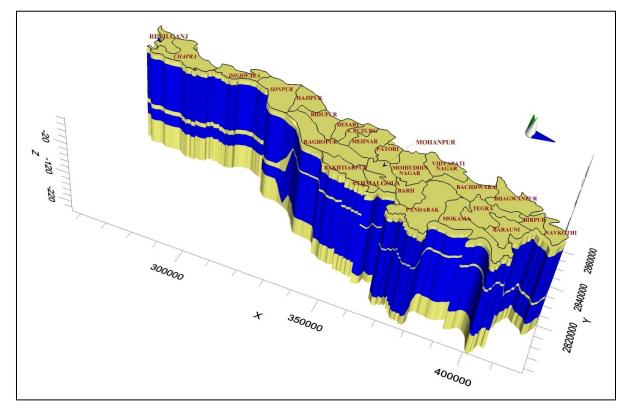
The normal annual rainfall of Samastipurdistrict is 1142mm of which %84 occurs during the monsoon season. The normal rainfall during monsoon season is 964 mm and during non-monsoon season is 178mm.

Agriculture and Irrigation

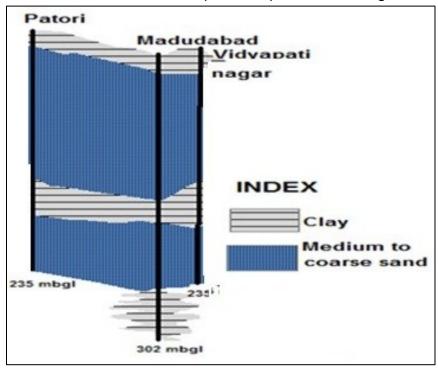
The Block falls in the Agro-climatic Zone I. The cropping sequence followed in Agro-climatic Zone I is Rice- Wheat, Rice- Rai, Rice-Sweet Potato, Rice-Maize, Maize-Wheat, Maize-Sweet Potato, Maize-Rai, Rice-lentil and Rice-linseed. The soils in this zone are sandy loam and loam with pH in the range of 6.5-8.4 The variation of rainfall in this zone is from 1040-1450 mm and the temperature varies from 36.6 to 7.7 °C.

Ground water resource availability and extraction

The dynamic ground water resource of Mahiuddin Nagar Block has been assessed as 42.77 MCM. The gross ground water draft for all uses stands at 20.96 MCM. The stage of Development is 49% (Annexure I).


Water level behavior

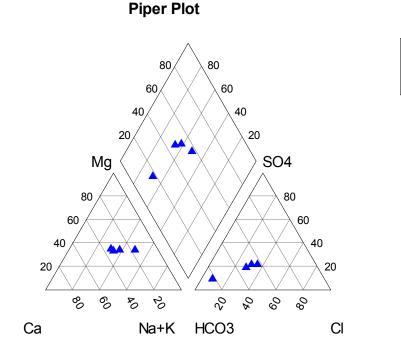
The depth to water level varies from 5m to 10 m during the pre-monsoon season and from 2 to 8 m during the post-monsoon season.


2. Aquifer Disposition

The area is bestowed with two- aquifer system. The section depicting the aquifer disposition is shown below(2 & 1 Fig)

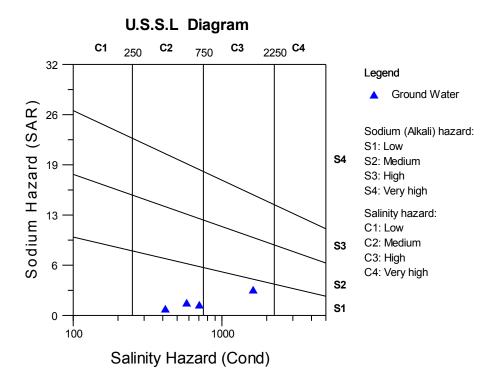
D View of aquifer disposition3 :1 Fig

3. Ground water resource, extraction, contamination and other issues



The overall stage of groundwater development in the Block is 49%. Thus sufficient scope exists for groundwater development in the Block.

Arsenic contamination of groundwater has been reported from the 1st aquifer in the younger alluvial belt upto the depth of 60m. Ground water exploration has revealed that the 2nd aquifer which is encountered below the clay layer separating the 1st and the 2nd aquifer is safe from arsenic contamination. The 2nd aquifer is thus recommended for community drinking water supply. Even in the 1st aquifer, the concentration of arsenic below the depth of 60 m has been found within the permissible limit, however, these are vulnerable to contamination with further groundwater development as they are part of the same contaminated aquifer. It is therefore recommended to develop the groundwater from the lower parts of the 1st aquifer only through hand-pumps. Energised extraction should be discouraged as this would accelerate the vertical mixing with the arsenic contaminated layers.


The 2nd Aquifer is recommended only for extraction for drinking water supply.

Chemical quality of ground water and contamination

4. Ground water resource enhancement

As the stage of groundwater development is within the safe limits and there is no longterm water level decline in the area, the need for artificial recharge is not felt.

5. Demand side interventions

In view of the issue of arsenic contamination, it is recommended to use the 2^{nd} Aquifer solely for meeting the drinking water supply requirement. Necessary regulations to enforce this recommendation in the arsenic affected Blocks may be made so as to keep the 2^{nd} aquifer safe from arsenic contamination.

Dynamic Ground Water Resource Estimation

												T			—
		Recharge	Recharge	Recharge	Recharge	Total	Provision	Net Annual	Existing	Existing	Existing Gross	Allocation for	Net Ground	Stage of	Cat
		from	from	from	from other	Annual	for Natural	Ground	Gross	Gross	Ground	Domestic and	Water	Ground	Safe
		Rainfall	other	Rainfall	sources	Ground	Discharge	Water	Ground	Ground	Water Draft	Industrial	Availability for	Water	criti
		during	sources	during	during non-	Water		Availability	Water	water Draft	For all Uses	Requirement	future irrigation	Developm	al/C
		monsoon	during	non-	monsoon	Recharge			Draft for	for Domestic	(10+11)	supply upto	development	ent (%)	exp
District	Block	season	monsoon	monsoon	season				Irrigation	and		year 2025	(9-10-13)		
			season	season						Industrial					
										Water Supply					
Samastip	Mohiuddin-	3385	336	533	248	4502	225	4277	1739	358	2096	637	1901	49	Saf
ur	nagar														
	Inagai														

Annexure II

Chemical Analysis of Ground Water Sample

sl no	Location	Block	well no	type of well	E.C.	TDS	Hardness	ph	HCO3(mg/l)	Cl(mg/l)	SO4(mg/l)	F(mg/l)	Ca
22	Andore	M.Nagar	Rs-34	Dw	423	356.61	170	8.35	225.7	14.2	23.3	0.21	
23	Rajajan	M.Nagar	Rs-36	DW	718	469.9	130	7.9	207.4	67.4	66	0.5	
32	Madudabad	M.Nagar	Rs-56	DW	1651	1078.3	400	7.65	396.5	198.8	173.8	0.2	
24	Lagunia	M.Nagar	Rs-41	DW	590	430.65	210	8.21	170.8	67.5	67.5	0.25	